Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer

被引:340
|
作者
Velazquez, Emmanuel Rios [1 ]
Parmar, Chintan [1 ]
Liu, Ying [2 ,3 ]
Coroller, Thibaud P. [1 ]
Cruz, Gisele [4 ]
Stringfield, Olya [2 ]
Ye, Zhaoxiang [3 ]
Makrigiorgos, Mike [1 ]
Fennessy, Fiona [1 ,4 ]
Mak, Raymond H. [1 ]
Gillies, Robert [2 ]
Quackenbush, John [5 ,6 ,7 ]
Aerts, Hugo J. W. L. [1 ,4 ,5 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiat Oncol, Dana Farber Canc Inst, Boston, MA USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Imaging & Metab, Tampa, FL USA
[3] Tianjin Med Univ, Dept Radiol, Canc Inst & Hosp,Tianjins Clin Res Ctr Canc, Natl Clin Res Ctr Canc,Key Lab Canc Prevent & The, Tianjin, Peoples R China
[4] Harvard Med Sch, Dana Farber Canc Inst, Brigham & Womens Hosp, Dept Radiol, Boston, MA USA
[5] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[6] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
关键词
FACTOR RECEPTOR MUTATIONS; INTRATUMOR HETEROGENEITY; PATHOLOGICAL RESPONSE; TUMOR HETEROGENEITY; FEATURES; RADIOMICS; SIGNATURE; ASSOCIATIONS; INFORMATION; PREDICTION;
D O I
10.1158/0008-5472.CAN-17-0122
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tumors are characterized by somatic mutations that drive biological processes ultimately reflected in tumor phenotype. With regard to radiographic phenotypes, generally unconnected through present understanding to the presence of specific mutations, artificial intelligence methods can automatically quantify phenotypic characters by using predefined, engineered algorithms or automatic deep-learning methods, a process also known as radiomics. Here we demonstrate how imaging phenotypes can be connected to somatic mutations through an integrated analysis of independent datasets of 763 lung adenocarcinoma patients with somatic mutation testing and engineered CT image analytics. We developed radiomic signatures capable of distinguishing between tumor genotypes in a discovery cohort (n = 353) and verified them in an independent validation cohort (n = 352). All radiomic signatures significantly outperformed conventional radiographic predictors (tumor volume andmaximumdiameter). We found a radiomic signature related to radiographic heterogeneity that successfully discriminated between EGFR_ and EGFR = cases (AUC = 0.69). Combining this signature with a clinical model of EGFR status (AUC = 0.70) significantly improved prediction accuracy (AUC = 0.75). The highest performing signature was capable of distinguishing between EGFR_ and KRAS_ tumors (AUC = 0.80) and, when combined with a clinical model (AUC = 0.81), substantially improved its performance (AUC = 0.86). A KRAS_/KRAS = radiomic signature also showed significant albeit lower performance (AUC = 0.63) and did not improve the accuracy of a clinical predictor of KRAS status. Our results argue that somatic mutations drive distinct radiographic phenotypes that can be predicted by radiomics. This work has implications for the use of imaging-based biomarkers in the clinic, as applied noninvasively, repeatedly, and at low cost. (C) 2017 AACR.
引用
收藏
页码:3922 / 3930
页数:9
相关论文
共 50 条
  • [21] Analysis of somatic mutations in lung cancer with targeted next generation sequencing
    Petkova, V. Y.
    Mitkova, A.
    Kachakova, D.
    Stancheva, G.
    Mihova, K.
    Marinova, D.
    Slavova-Marinova, Y.
    Mitev, V.
    Kaneva, R.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 438 - 439
  • [22] Somatic mutations and ancestry markers in Hispanic lung cancer patients.
    Cress, William D.
    Gimbrone, Nicholas T.
    Sarcar, Bhaswati
    Gordian, Edna
    Rivera, Jason I.
    Lopez, Christian
    Teer, Jamie K.
    Welsh, Eric A.
    Chiappori, Alberto A.
    Schabath, Matthew B.
    Reuther, Gary W.
    Santiago-Cardona, Pedro G.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2018, 27 (07) : 45 - 45
  • [23] Characterization of Somatic Mutations in Air Pollution-Related Lung Cancer
    Yu, Xian-Jun
    Yang, Min-Jun
    Zhou, Bo
    Wang, Gui-Zhen
    Huang, Yun-Chao
    Wu, Li-Chuan
    Cheng, Xin
    Wen, Zhe-Sheng
    Huang, Jin-Yan
    Zhang, Yun-Dong
    Gao, Xiao-Hong
    Li, Gao-Feng
    He, Shui-Wang
    Gu, Zhao-Hui
    Ma, Liang
    Pan, Chun-Ming
    Wang, Ping
    Chen, Hao-Bin
    Hong, Zhi-Peng
    Wang, Xiao-Lu
    Mao, Wen-Jing
    Jin, Xiao-Long
    Kang, Hui
    Chen, Shu-Ting
    Zhu, Yong-Qiang
    Gu, Wen-Yi
    Liu, Zi
    Dong, Hui
    Tian, Lin-Wei
    Chen, Sai-Juan
    Cao, Yi
    Wang, Sheng-Yue
    Zhou, Guang-Biao
    EBIOMEDICINE, 2015, 2 (06): : 583 - 590
  • [24] Somatic mutations of the protein kinase gene family in human lung cancer
    Davies, H
    Hunter, C
    Smith, R
    Stephens, P
    Greenman, C
    Bignell, G
    Teague, B
    Butler, A
    Edkins, S
    Stevens, C
    Parker, A
    O'Meara, S
    Avis, T
    Barthorpe, S
    Brackenbury, L
    Buck, G
    Clements, B
    Cole, J
    Dicks, E
    Edwards, K
    Forbes, S
    Gorton, M
    Gray, K
    Halliday, K
    Harrison, R
    Hills, K
    Hinton, J
    Jones, D
    Kosmidou, V
    Laman, R
    Lugg, R
    Menzies, A
    Perry, J
    Petty, R
    Raine, K
    Shepherd, R
    Small, A
    Solomon, H
    Stephens, Y
    Tofts, C
    Varian, J
    Webb, A
    West, S
    Widaa, S
    Yates, A
    Brasseur, F
    Cooper, CS
    Flanagan, AM
    Green, A
    Knowles, M
    CANCER RESEARCH, 2005, 65 (17) : 7591 - 7595
  • [25] Somatic Trp53 mutations differentially drive breast cancer and evolution of metastases
    Zhang, Yun
    Xiong, Shunbin
    Liu, Bin
    Pant, Vinod
    Celii, Francis
    Chau, Gilda
    Elizondo-Fraire, Ana C.
    Yang, Peirong
    You, Mingjian James
    El-Naggar, Adel K.
    Navin, Nicholas E.
    Lozano, Guillermina
    NATURE COMMUNICATIONS, 2018, 9
  • [26] Somatic Trp53 mutations differentially drive breast cancer and evolution of metastases
    Yun Zhang
    Shunbin Xiong
    Bin Liu
    Vinod Pant
    Francis Celii
    Gilda Chau
    Ana C. Elizondo-Fraire
    Peirong Yang
    Mingjian James You
    Adel K. El-Naggar
    Nicholas E. Navin
    Guillermina Lozano
    Nature Communications, 9
  • [27] Interpreting glioma MR imaging and somatic mutations in a cancer hallmark context
    Graf, John
    Rusu, Mirabela
    Sui, Yunxia
    Shanbhag, Dattesh
    Patil, Uday
    Kiefer, Jeffrey
    Barnholtz-Sloan, Jill
    Berens, Michael
    Ginty, Fiona
    Gupta, Sandeep
    Kodira, Chinnappa
    Newberg, Lee
    Raghunath, Sushravya
    Sood, Anup
    CANCER RESEARCH, 2017, 77
  • [28] Somatic mutations in collagens are associated with a distinct tumor environment and overall survival in gastric cancer
    Brodsky, Alexander S.
    Khurana, Jay
    Guo, Kevin S.
    Wu, Elizabeth Y.
    Yang, Dongfang
    Siddique, Ayesha S.
    Wong, Ian Y.
    Uzun, Ece D. Gamsiz
    Resnick, Murray B.
    BMC CANCER, 2022, 22 (01)
  • [29] Somatic mutations in collagens are associated with a distinct tumor environment and overall survival in gastric cancer
    Alexander S. Brodsky
    Jay Khurana
    Kevin S. Guo
    Elizabeth Y. Wu
    Dongfang Yang
    Ayesha S. Siddique
    Ian Y. Wong
    Ece D. Gamsiz Uzun
    Murray B. Resnick
    BMC Cancer, 22
  • [30] TUMUR MUTATIONS DRIVE DYSFUNCTIONAL T CELL DIFFERENTIATION IN LUNG CANCER
    Ghorani, E.
    Reading, J.
    Henry, J.
    de Massy, M. Robert
    Rosenthal, R.
    Turati, V.
    Furness, A.
    Ben Aissa, A.
    Saini, S. Kumar
    Ramskov, S.
    Georgiou, A.
    De Mucha, M. Vila
    Uddin, I.
    Ronel, T.
    Salgado, R.
    Lund, T.
    Herrero, J.
    Enver, T.
    Hadrup, S.
    Hackshaw, A.
    Peggs, K.
    McGranahan, N.
    Chain, B.
    Swanton, C.
    Quezada, S.
    JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2020, 8 : A35 - A35