Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer

被引:340
|
作者
Velazquez, Emmanuel Rios [1 ]
Parmar, Chintan [1 ]
Liu, Ying [2 ,3 ]
Coroller, Thibaud P. [1 ]
Cruz, Gisele [4 ]
Stringfield, Olya [2 ]
Ye, Zhaoxiang [3 ]
Makrigiorgos, Mike [1 ]
Fennessy, Fiona [1 ,4 ]
Mak, Raymond H. [1 ]
Gillies, Robert [2 ]
Quackenbush, John [5 ,6 ,7 ]
Aerts, Hugo J. W. L. [1 ,4 ,5 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiat Oncol, Dana Farber Canc Inst, Boston, MA USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Imaging & Metab, Tampa, FL USA
[3] Tianjin Med Univ, Dept Radiol, Canc Inst & Hosp,Tianjins Clin Res Ctr Canc, Natl Clin Res Ctr Canc,Key Lab Canc Prevent & The, Tianjin, Peoples R China
[4] Harvard Med Sch, Dana Farber Canc Inst, Brigham & Womens Hosp, Dept Radiol, Boston, MA USA
[5] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[6] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
关键词
FACTOR RECEPTOR MUTATIONS; INTRATUMOR HETEROGENEITY; PATHOLOGICAL RESPONSE; TUMOR HETEROGENEITY; FEATURES; RADIOMICS; SIGNATURE; ASSOCIATIONS; INFORMATION; PREDICTION;
D O I
10.1158/0008-5472.CAN-17-0122
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tumors are characterized by somatic mutations that drive biological processes ultimately reflected in tumor phenotype. With regard to radiographic phenotypes, generally unconnected through present understanding to the presence of specific mutations, artificial intelligence methods can automatically quantify phenotypic characters by using predefined, engineered algorithms or automatic deep-learning methods, a process also known as radiomics. Here we demonstrate how imaging phenotypes can be connected to somatic mutations through an integrated analysis of independent datasets of 763 lung adenocarcinoma patients with somatic mutation testing and engineered CT image analytics. We developed radiomic signatures capable of distinguishing between tumor genotypes in a discovery cohort (n = 353) and verified them in an independent validation cohort (n = 352). All radiomic signatures significantly outperformed conventional radiographic predictors (tumor volume andmaximumdiameter). We found a radiomic signature related to radiographic heterogeneity that successfully discriminated between EGFR_ and EGFR = cases (AUC = 0.69). Combining this signature with a clinical model of EGFR status (AUC = 0.70) significantly improved prediction accuracy (AUC = 0.75). The highest performing signature was capable of distinguishing between EGFR_ and KRAS_ tumors (AUC = 0.80) and, when combined with a clinical model (AUC = 0.81), substantially improved its performance (AUC = 0.86). A KRAS_/KRAS = radiomic signature also showed significant albeit lower performance (AUC = 0.63) and did not improve the accuracy of a clinical predictor of KRAS status. Our results argue that somatic mutations drive distinct radiographic phenotypes that can be predicted by radiomics. This work has implications for the use of imaging-based biomarkers in the clinic, as applied noninvasively, repeatedly, and at low cost. (C) 2017 AACR.
引用
收藏
页码:3922 / 3930
页数:9
相关论文
共 50 条
  • [1] Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer
    Parmar, C.
    Velazquez, E. Rios
    Liu, Y.
    Coroller, T.
    Cruz, G.
    Stringfield, O.
    Ye, Z.
    Makrigiorgos, G.
    Fennessy, F.
    Mak, R.
    Gillies, R.
    Quackenbush, J.
    Aerts, H.
    MEDICAL PHYSICS, 2017, 44 (06) : 3288 - 3288
  • [2] Associations Between Somatic Mutations and Metabolic Imaging Phenotypes in Non-Small Cell Lung Cancer
    Yip, Stephen S. F.
    Kim, John
    Coroner, Thibaud P.
    Parmar, Chintan
    Velazquez, Emmanuel Rios
    Huynh, Elizabeth
    Mak, Raymond H.
    Aerts, Hugo J. W. L.
    JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (04) : 569 - 576
  • [3] Somatic mutations in lung cancer
    Sanchez-Cespedes, Montse
    JOURNAL OF THORACIC ONCOLOGY, 2009, 4 (09) : S205 - S206
  • [4] Somatic mutations in the development of lung cancer
    Rolan, M
    Rudd, RM
    THORAX, 1998, 53 (11) : 979 - 983
  • [5] Comprehensive Coverage of Lung Cancer Somatic Mutations by IntelliPlex Lung Cancer Panel
    Felicioni, L.
    Buttitta, F.
    Marchetti, A.
    Borrelli, N.
    Hu, S.
    Yang, C.
    Liang, W.
    Hu, J.
    Palmer, S.
    Huang, C.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2020, 22 (11): : S59 - S59
  • [6] Somatic p53 mutations drive development of triple-negative breast cancer with evolutionarily distinct metastases.
    Zhang, Yun
    Xiong, Shunbin
    Lozano, Guillermina
    CANCER RESEARCH, 2018, 78 (10) : 17 - 18
  • [7] ALLSTAR: inference of reliAble causaL ruLes between Somatic muTAtions and canceR phenotypes
    Simionato, Dario
    Collesei, Antonio
    Miglietta, Federica
    Vandin, Fabio
    BIOINFORMATICS, 2024, 40 (07)
  • [8] High-throughput Phenotyping of Lung Cancer Somatic Mutations
    Berger, Alice H.
    Brooks, Angela N.
    Wu, Xiaoyun
    Shrestha, Yashaswi
    Chouinard, Candace
    Piccioni, Federica
    Bagul, Mukta
    Kamburov, Atanas
    Imielinski, Marcin
    Hogstrom, Larson
    Zhu, Cong
    Yang, Xiaoping
    Pantel, Sasha
    Sakai, Ryo
    Watson, Jacqueline
    Kaplan, Nathan
    Campbell, Joshua D.
    Singh, Shantanu
    Root, David E.
    Narayan, Rajiv
    Natoli, Ted
    Lahr, David L.
    Tirosh, Itay
    Tamayo, Pablo
    Getz, Gad
    Wong, Bang
    Doench, John
    Subramanian, Aravind
    Golub, Todd R.
    Meyerson, Matthew
    Boehm, Jesse S.
    CANCER CELL, 2016, 30 (02) : 214 - 228
  • [9] Somatic Mutations and Ancestry Markers in Hispanic Lung Cancer Patients
    Gimbrone, N. T.
    Sarcar, B.
    Gordian, E. R.
    Rivera, J. I.
    Lopez, C.
    Yoder, S. J.
    Teer, J. K.
    Welsh, E. A.
    Chiaporri, A. A.
    Schabath, M. B.
    Reuther, G. W.
    Dutil, J.
    Garcia, M.
    Ventosilla-Villanueva, R.
    Vera-Valdivia, L.
    Yabar-Berrocal, A.
    Motta-Guerrero, R.
    Santiago-Cardona, P. G.
    Munoz-Antonia, T.
    Cress, W. D.
    JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (08) : S1541 - S1541
  • [10] Somatic mutations lead to an oncogenic deletion of Met in lung cancer
    Kong-Beltran, M
    Seshagiri, S
    Zha, JP
    Zhu, WJ
    Bhawe, K
    Mendoza, N
    Holcomb, T
    Pujara, K
    Stinson, J
    Fu, L
    Severin, C
    Rangell, L
    Schwall, R
    Amler, L
    Wickramasinghe, D
    Yauch, R
    CANCER RESEARCH, 2006, 66 (01) : 283 - 289