Sixth-order self-interaction in nonlinear field theory

被引:0
|
作者
Aguero-Granados, MA [1 ]
机构
[1] Univ Autonoma Estado Mexico, Fac Ciencias, Unidad Acad Cerrillo, Inst Literario 100, Toluca 50000, Edo De Mex, Mexico
关键词
solitons; cubic quintic Schrodinger equation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using as a central axis the soliton like solutions of the cubic quintic nonlinear Schrodinger equation, we explain certain concepts of the nonlinear field theory: the coherent state method, topological charges, mechanical analogy method and so on. Our main concern is the nonrelativistic case in 1+1 dimensional space-time.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 50 条
  • [41] Justification of a nonlinear sixth-order thin-film equation as the reduced model for a fluid structure interaction problem
    Bukal, Mario
    Muha, Boris
    NONLINEARITY, 2022, 35 (08) : 4695 - 4726
  • [42] On the Sixth-Order Joseph–Lundgren Exponent
    Abdellaziz Harrabi
    Belgacem Rahal
    Annales Henri Poincaré, 2017, 18 : 1055 - 1094
  • [43] ARRANGEMENT OF OVALS OF A SIXTH-ORDER CURVE
    GUDKOV, DA
    DOKLADY AKADEMII NAUK SSSR, 1969, 185 (02): : 260 - &
  • [44] A Sixth-order Image Approximation to the Ionic Solvent Induced Reaction Field
    Xiang, Ming
    Deng, Shaozhong
    Cai, Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (03) : 411 - 435
  • [45] Generalized sixth-order dispersion solitons
    Qiang, Y. Long
    Alexander, Tristram J.
    de Sterke, C. Martijn
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [46] A sixth-order parabolic system in semiconductors
    Chen, Xiuqing
    Chen, Li
    Sun, Caiyun
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (02) : 265 - 278
  • [47] A Sixth-Order Parabolic System in Semiconductors
    Xiuqing CHEN1 Li CHEN2 Caiyun SUN3 1School of Sciences
    Chinese Annals of Mathematics(Series B), 2011, 32 (02) : 265 - 278
  • [48] A sixth-order parabolic system in semiconductors
    Xiuqing Chen
    Li Chen
    Caiyun Sun
    Chinese Annals of Mathematics, Series B, 2011, 32 : 265 - 278
  • [49] Rogue waves of the sixth-order nonlinear Schr?dinger equation on a periodic background
    Wei Shi
    Zhaqilao
    CommunicationsinTheoreticalPhysics, 2022, 74 (05) : 5 - 13
  • [50] A simple efficient method for solving sixth-order nonlinear boundary value problems
    Dang Quang A
    Dang Quang Long
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 : 16 - 26