Sixth-order self-interaction in nonlinear field theory

被引:0
|
作者
Aguero-Granados, MA [1 ]
机构
[1] Univ Autonoma Estado Mexico, Fac Ciencias, Unidad Acad Cerrillo, Inst Literario 100, Toluca 50000, Edo De Mex, Mexico
关键词
solitons; cubic quintic Schrodinger equation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using as a central axis the soliton like solutions of the cubic quintic nonlinear Schrodinger equation, we explain certain concepts of the nonlinear field theory: the coherent state method, topological charges, mechanical analogy method and so on. Our main concern is the nonrelativistic case in 1+1 dimensional space-time.
引用
收藏
页码:82 / 91
页数:10
相关论文
共 50 条
  • [31] A sixth-order central WENO scheme for nonlinear degenerate parabolic equations
    Samala Rathan
    Jiaxi Gu
    Computational and Applied Mathematics, 2023, 42
  • [32] Efficient Family of Sixth-Order Methods for Nonlinear Models with Its Dynamics
    Behl, Ramandeep
    Maroju, Prashanth
    Motsa, S. S.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2019, 16 (05)
  • [33] Nonlinear wave solutions for an integrable sixth-order nonlinear Schrodinger equation in an optical fiber
    Jiang, Xiao-Hang
    Gao, Yi-Tian
    Huang, Qian-Min
    OPTIK, 2017, 144 : 685 - 697
  • [34] A Sixth-order Image Approximation to the Ionic Solvent Induced Reaction Field
    Ming Xiang
    Shaozhong Deng
    Wei Cai
    Journal of Scientific Computing, 2009, 41 : 411 - 435
  • [35] UNITARITY AND ANALYTICITY FOR A SIXTH-ORDER DIAGRAM
    MINNAERT, P
    SENEOR, R
    PHYSICAL REVIEW, 1965, 140 (2B): : B422 - &
  • [36] Cosmological dynamics in sixth-order gravity
    M. Skugoreva
    A. Toporensky
    P. Tretyakov
    Gravitation and Cosmology, 2011, 17
  • [37] Existence for a semilinear sixth-order ODE
    Gyulov, Tihomir
    Morosanu, Gheorghe
    Tersian, Stepan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (01) : 86 - 98
  • [38] Cosmological dynamics in sixth-order gravity
    Skugoreva, M.
    Toporensky, A.
    Tretyakov, P.
    GRAVITATION & COSMOLOGY, 2011, 17 (02): : 110 - 118
  • [39] Unification of sixth-order iterative methods
    Khattri S.K.
    Argyros I.K.
    Mathematical Sciences, 2013, 7 (1)
  • [40] SIXTH-ORDER MAGNETIC MOMENT OF ELECTRON
    LEVINE, MJ
    WRIGHT, J
    PHYSICAL REVIEW LETTERS, 1971, 26 (21) : 1351 - &