Acral melanocytic lesion segmentation with a convolution neural network (U-Net)

被引:2
|
作者
Jaworek-Korjakowska, Joanna [1 ]
机构
[1] AGH Univ Sci & Technol, Dept Automat Control & Robot, Al A Mickiewicza 30, PL-30059 Krakow, Poland
关键词
Acral melanoma; deep learning; U-Net architecture; skin cancer; segmentation; DERMOSCOPY IMAGES; CLASSIFICATION;
D O I
10.1117/12.2512804
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Melanocytic lesions of acral sites (ALM) are common, with an estimated prevalence of 28 - 36% in the USA. While the majority of these lesions are benign, differentiation from acral melanoma (AM) is often challenging. Much research has been done in segmenting and classifying skin moles located in acral volar areas. However, methods published to date cannot be easily extended to new skin regions because of different appearance and properties. In this paper, we propose a deep learning (U-Net) architecture to segment acral melonacytic lesions which is a necessary initial step for skin lesion pattern recognition, furthermore it is a prerequisite step to provide an accurate classification and diagnosis. The U-Net is one of the most promising deep learning solution for image segmentation and is built upon fully convolutional network. On the independent validation dataset including 210 dermoscopy images our implemented method showed high segmentation accuracy. For the U-Net convolutional neural network, an average DSC of 0.92, accuracy 0.94, sensitivity 0.91, and specificity 0.92 has been achieved. ALM due to small size and similarity to other local structures create enormous difficulties during the segmentation and assessment process. The use of advanced segmentation methods like deep learning models especially convolutional neural networks have the potential to improve the accuracy of advanced medical area segmentation.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] RetU-Net: An Enhanced U-Net Architecture for Retinal Lesion Segmentation
    Sundar, Sumod
    Sumathy, S.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2023, 32 (04)
  • [32] Light-Convolution Dense Selection U-Net (LDS U-Net) for Ultrasound Lateral Bony Feature Segmentation
    Banerjee, Sunetra
    Lyu, Juan
    Huang, Zixun
    Leung, Hung Fat Frank
    Lee, Timothy Tin-Yan
    Yang, De
    Su, Steven
    Zheng, Yongping
    Ling, Sai-Ho
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [33] Image Segmentation with Pyramid Dilated Convolution Based on ResNet and U-Net
    Zhang, Qiao
    Cui, Zhipeng
    Niu, Xiaoguang
    Geng, Shijie
    Qiao, Yu
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 364 - 372
  • [34] U-ISLES: Ischemic Stroke Lesion Segmentation Using U-Net
    Cornelio, Lea Katrina S.
    del Castillo, Mary Abigail, V
    Naval, Prospero C., Jr.
    INTELLIGENT SYSTEMS AND APPLICATIONS, INTELLISYS, VOL 2, 2019, 869 : 326 - 336
  • [35] LUT-SLS: A Lightweight Transformer Network Based on U-Net for Skin Lesion Segmentation
    Zhao, Ming
    Zhou, Bingxue
    Hung, Ling-Ju
    Journal of Internet Technology, 2024, 25 (05): : 795 - 805
  • [36] Stone segmentation based on improved U-Net network
    Chen, Ning
    Ma, Xinkai
    Luo, Haixia
    Peng, Jun
    Jin, Shangzhu
    Wu, Xiao
    Zhou, Yongsheng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 895 - 908
  • [37] Instance segmentation by blend U-Net and VOLO network
    Deng, Hongfei
    Wen, Bin
    Wang, Rui
    Feng, Zuwei
    IET COMPUTER VISION, 2024,
  • [38] Improved U-NET network for pulmonary nodules segmentation
    Tong, Guofeng
    Li, Yong
    Chen, Huairong
    Zhang, Qingchun
    Jiang, Huiying
    OPTIK, 2018, 174 : 460 - 469
  • [39] Retinal Vessel Segmentation with Differentiated U-Net Network
    Arpaci, Saadet Aytac
    Varli, Songul
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [40] Investigation of the applicability of the convolutional neural network U-Net to a problem of segmentation of aircraft images
    Gavrilov, D. A.
    COMPUTER OPTICS, 2021, 45 (04) : 575 - +