Acral melanocytic lesion segmentation with a convolution neural network (U-Net)

被引:2
|
作者
Jaworek-Korjakowska, Joanna [1 ]
机构
[1] AGH Univ Sci & Technol, Dept Automat Control & Robot, Al A Mickiewicza 30, PL-30059 Krakow, Poland
关键词
Acral melanoma; deep learning; U-Net architecture; skin cancer; segmentation; DERMOSCOPY IMAGES; CLASSIFICATION;
D O I
10.1117/12.2512804
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Melanocytic lesions of acral sites (ALM) are common, with an estimated prevalence of 28 - 36% in the USA. While the majority of these lesions are benign, differentiation from acral melanoma (AM) is often challenging. Much research has been done in segmenting and classifying skin moles located in acral volar areas. However, methods published to date cannot be easily extended to new skin regions because of different appearance and properties. In this paper, we propose a deep learning (U-Net) architecture to segment acral melonacytic lesions which is a necessary initial step for skin lesion pattern recognition, furthermore it is a prerequisite step to provide an accurate classification and diagnosis. The U-Net is one of the most promising deep learning solution for image segmentation and is built upon fully convolutional network. On the independent validation dataset including 210 dermoscopy images our implemented method showed high segmentation accuracy. For the U-Net convolutional neural network, an average DSC of 0.92, accuracy 0.94, sensitivity 0.91, and specificity 0.92 has been achieved. ALM due to small size and similarity to other local structures create enormous difficulties during the segmentation and assessment process. The use of advanced segmentation methods like deep learning models especially convolutional neural networks have the potential to improve the accuracy of advanced medical area segmentation.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network
    Kou, Caixia
    Li, Wei
    Liang, Wei
    Yu, Zekuan
    Hao, Jianchen
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [22] Color-invariant skin lesion semantic segmentation based on modified U-Net deep convolutional neural network
    Rania Ramadan
    Saleh Aly
    Mahmoud Abdel-Atty
    Health Information Science and Systems, 10
  • [23] Color-invariant skin lesion semantic segmentation based on modified U-Net deep convolutional neural network
    Ramadan, Rania
    Aly, Saleh
    Abdel-Atty, Mahmoud
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2022, 10 (01)
  • [24] A Dense U-Net Architecture for Multiple Sclerosis Lesion Segmentation
    Kumar, Amish
    Murthy, Oduri Narayana
    Shrish
    Ghosal, Palash
    Mukherjee, Amritendu
    Nandi, Debashis
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 662 - 667
  • [25] Lung computed tomography image segmentation based on U-Net network fused with dilated convolution
    Chen, Kuan-bing
    Xuan, Ying
    Lin, Ai-jun
    Guo, Shao-hua
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 207
  • [26] A U-Net Ensemble for breast lesion segmentation in DCE MRI
    Khaled, Roa'a
    Vidal, Joel
    Vilanova, Joan C.
    Marti, Robert
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [27] A Dense-Gated U-Net for Brain Lesion Segmentation
    Ji, Zhongyi
    Han, Xiao
    Lin, Tong
    Wang, Wenmin
    2020 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2020, : 104 - 107
  • [28] A U-Net Approach to Apical Lesion Segmentation on Panoramic Radiographs
    Bayrakdar, Ibrahim S.
    Orhan, Kaan
    celik, Oezer
    Bilgir, Elif
    Saglam, Hande
    Kaplan, Fatma Akkoca
    Gorur, Sinem Atay
    Odabas, Alper
    Aslan, Ahmet Faruk
    Rozylo-Kalinowska, Ingrid
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [29] Towards improved U-Net for efficient skin lesion segmentation
    Nampalle, Kishore Babu
    Pundhir, Anshul
    Jupudi, Pushpamanjari Ramesh
    Raman, Balasubramanian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71665 - 71682
  • [30] GT U-Net: A U-Net Like Group Transformer Network for Tooth Root Segmentation
    Li, Yunxiang
    Wang, Shuai
    Wang, Jun
    Zeng, Guodong
    Liu, Wenjun
    Zhang, Qianni
    Jin, Qun
    Wang, Yaqi
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2021, 2021, 12966 : 386 - 395