Spin density in partially coherent surface-plasmon-polariton vortex fields

被引:8
|
作者
Chen, Yahong [1 ,2 ]
Norrman, Andreas [3 ,4 ]
Ponomarenko, Sergey A. [5 ,6 ]
Friberg, Ari T. [4 ]
机构
[1] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[3] Swiss Fed Inst Technol, Photon Lab, CH-8093 Zurich, Switzerland
[4] Univ Eastern Finland, Inst Photon, POB 111, FI-80101 Joensuu, Finland
[5] Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS B3J 2X4, Canada
[6] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会; 芬兰科学院; 中国国家自然科学基金;
关键词
OPTICAL COHERENCE;
D O I
10.1103/PhysRevA.103.063511
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Y We examine the spin angular momentum (SAM) density associated with the recently introduced [Phys. Rev. A 100, 053833 (2019)], partially coherent surface-plasmon-polariton (SPP) vortex fields at a metal-air interface. We show that the vortices appearing in such structured SPP fields induce a SAM density both in the interface plane and in the direction normal to the interface. We find that the radial and azimuthal SAM densities are caused solely by the SPP electric-field correlations. However, besides the intrinsic spin component induced by the complex SPP wave vector, the azimuthal SAM density remarkably carries also a spin component created by the elementary SPPs comprising the partially coherent vortex field. The normal SAM density, on the other hand, arises mainly due to the SPP magnetic-field correlations. Our analysis specifically demonstrates that the state of coherence of the partially coherent SPP vortex field plays an essential role in shaping the SAM density distributions. Our findings can find applications to near-field particle manipulation and in spin-based integrated photonic circuit design.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications
    Chamanzar, M.
    Soltani, M.
    Momeni, B.
    Yegnanarayanan, S.
    Adibi, A.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 101 (1-2): : 263 - 271
  • [42] CALCULATION AND INTERPRETATION OF SURFACE-PLASMON-POLARITON FEATURES IN THE REFLECTIVITY OF METALLIC NANOWIRE ARRAYS
    Scholz, Patrick
    Schwieger, Stephan
    Vasa, Parinda
    Runge, Erich
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (25-26): : 4442 - 4451
  • [43] Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths
    Nikolajsen, T
    Leosson, K
    Salakhutdinov, I
    Bozhevolnyi, SI
    APPLIED PHYSICS LETTERS, 2003, 82 (05) : 668 - 670
  • [44] A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure
    Zhang, Xiang
    Li, Zhi
    Chen, Jianjun
    Liao, Huimin
    Yue, Song
    Gong, Qihuang
    APPLIED PHYSICS LETTERS, 2013, 102 (09)
  • [45] On the Use of Subwavelength Radial Grooves to Support Spoof Surface-Plasmon-Polariton Waves
    Pantoja, Mario F.
    Jiang, Zhi Hao
    Werner, Pingjuan L.
    Werner, Douglas H.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (11) : 861 - 863
  • [46] Surface-Plasmon-Polariton modes in deep metallic trenches- measurement and analysis
    Satuby, Yinon
    Orenstein, Meir
    OPTICS EXPRESS, 2007, 15 (07): : 4247 - 4252
  • [47] Commentary: Arbitrarily polarized long-range surface-plasmon-polariton waves
    Jen, Yi-Jun
    JOURNAL OF NANOPHOTONICS, 2011, 5
  • [48] Preservation of photon indistinguishability after transmission through surface-plasmon-polariton waveguide
    Fujii, Go
    Segawa, Toshiya
    Mori, Shigehiko
    Namekata, Naoto
    Fukuda, Daiji
    Inoue, Shuichiro
    OPTICS LETTERS, 2012, 37 (09) : 1535 - 1537
  • [49] High-Q surface-plasmon-polariton whispering-gallery microcavity
    Bumki Min
    Eric Ostby
    Volker Sorger
    Erick Ulin-Avila
    Lan Yang
    Xiang Zhang
    Kerry Vahala
    Nature, 2009, 457 : 455 - 458
  • [50] Theoretical analysis of surface-plasmon-polariton resonators in free space and close to an interface
    Jung, Jesper
    Sondergaard, Thomas
    NANOPHOTONICS II, 2008, 6988