Spin density in partially coherent surface-plasmon-polariton vortex fields

被引:8
|
作者
Chen, Yahong [1 ,2 ]
Norrman, Andreas [3 ,4 ]
Ponomarenko, Sergey A. [5 ,6 ]
Friberg, Ari T. [4 ]
机构
[1] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[3] Swiss Fed Inst Technol, Photon Lab, CH-8093 Zurich, Switzerland
[4] Univ Eastern Finland, Inst Photon, POB 111, FI-80101 Joensuu, Finland
[5] Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS B3J 2X4, Canada
[6] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会; 芬兰科学院; 中国国家自然科学基金;
关键词
OPTICAL COHERENCE;
D O I
10.1103/PhysRevA.103.063511
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Y We examine the spin angular momentum (SAM) density associated with the recently introduced [Phys. Rev. A 100, 053833 (2019)], partially coherent surface-plasmon-polariton (SPP) vortex fields at a metal-air interface. We show that the vortices appearing in such structured SPP fields induce a SAM density both in the interface plane and in the direction normal to the interface. We find that the radial and azimuthal SAM densities are caused solely by the SPP electric-field correlations. However, besides the intrinsic spin component induced by the complex SPP wave vector, the azimuthal SAM density remarkably carries also a spin component created by the elementary SPPs comprising the partially coherent vortex field. The normal SAM density, on the other hand, arises mainly due to the SPP magnetic-field correlations. Our analysis specifically demonstrates that the state of coherence of the partially coherent SPP vortex field plays an essential role in shaping the SAM density distributions. Our findings can find applications to near-field particle manipulation and in spin-based integrated photonic circuit design.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Manipulating surface-plasmon-polariton launching with quasi-cylindrical waves
    Chengwei Sun
    Jianjun Chen
    Wenjie Yao
    Hongyun Li
    Qihuang Gong
    Scientific Reports, 5
  • [32] Enhanced absorption of light due to multiple surface-plasmon-polariton waves
    Faryad, Muhammad
    Lakhtakia, Akhlesh
    THIN FILM SOLAR TECHNOLOGY III, 2011, 8110
  • [33] Surface-Plasmon-Polariton Diode by Asymmetric Plano-Concave Nanocavities
    Liu, Feifei
    Zhang, Xinping
    ADVANCED OPTICAL MATERIALS, 2018, 6 (08):
  • [34] Ultracompact Refractive Index Sensor Based on Surface-Plasmon-Polariton Interference
    Wang Chen
    Chen Jian-Jun
    Tang Wei-Hua
    Xiao Jing-Hua
    CHINESE PHYSICS LETTERS, 2012, 29 (12)
  • [35] On Surface-Plasmon-Polariton Waves Excited in the Turbadar-Otto Configuration
    Mackay, Tom G.
    Faryad, Muhammad
    PLASMONICS, 2022, 17 (02) : 753 - 755
  • [36] Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications
    M. Chamanzar
    M. Soltani
    B. Momeni
    S. Yegnanarayanan
    A. Adibi
    Applied Physics B, 2010, 101 : 263 - 271
  • [37] Manipulating surface-plasmon-polariton launching with quasi-cylindrical waves
    Sun, Chengwei
    Chen, Jianjun
    Yao, Wenjie
    Li, Hongyun
    Gong, Qihuang
    SCIENTIFIC REPORTS, 2015, 5
  • [38] Asymmetric and symmetric local surface-plasmon-polariton excitation on chains of nanoparticles
    Evlyukhin, Andrey B.
    Reinhardt, Carsten
    Evlyukhina, Elena
    Chichkov, Boris N.
    OPTICS LETTERS, 2009, 34 (14) : 2237 - 2239
  • [39] Cogwheels for generation of surface plasmon polariton vortex
    Xu, Zhengji
    Tobing, Landobasa Y. M.
    Zhang, Dawei
    Zhang, Dao Hua
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2015, 12 (10-12) : 909 - 916
  • [40] Long-range surface-plasmon-polariton excitation at the quantum level
    Ballester, D.
    Tame, M. S.
    Lee, C.
    Lee, J.
    Kim, M. S.
    PHYSICAL REVIEW A, 2009, 79 (05):