Spin density in partially coherent surface-plasmon-polariton vortex fields

被引:8
|
作者
Chen, Yahong [1 ,2 ]
Norrman, Andreas [3 ,4 ]
Ponomarenko, Sergey A. [5 ,6 ]
Friberg, Ari T. [4 ]
机构
[1] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[3] Swiss Fed Inst Technol, Photon Lab, CH-8093 Zurich, Switzerland
[4] Univ Eastern Finland, Inst Photon, POB 111, FI-80101 Joensuu, Finland
[5] Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS B3J 2X4, Canada
[6] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会; 芬兰科学院; 中国国家自然科学基金;
关键词
OPTICAL COHERENCE;
D O I
10.1103/PhysRevA.103.063511
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Y We examine the spin angular momentum (SAM) density associated with the recently introduced [Phys. Rev. A 100, 053833 (2019)], partially coherent surface-plasmon-polariton (SPP) vortex fields at a metal-air interface. We show that the vortices appearing in such structured SPP fields induce a SAM density both in the interface plane and in the direction normal to the interface. We find that the radial and azimuthal SAM densities are caused solely by the SPP electric-field correlations. However, besides the intrinsic spin component induced by the complex SPP wave vector, the azimuthal SAM density remarkably carries also a spin component created by the elementary SPPs comprising the partially coherent vortex field. The normal SAM density, on the other hand, arises mainly due to the SPP magnetic-field correlations. Our analysis specifically demonstrates that the state of coherence of the partially coherent SPP vortex field plays an essential role in shaping the SAM density distributions. Our findings can find applications to near-field particle manipulation and in spin-based integrated photonic circuit design.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Partially coherent surface plasmon polariton vortex fields
    Chen, Yahong
    Norrman, Andreas
    Ponomarenko, Sergey A.
    Friberg, Ari T.
    PHYSICAL REVIEW A, 2019, 100 (05)
  • [2] Partially coherent axiconic surface plasmon polariton fields
    Chen, Yahong
    Norrman, Andreas
    Ponomarenko, Sergey A.
    Friberg, Ari T.
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [3] Scattering of partially coherent surface plasmon polariton fields by metallic nanostripe
    Daniel, Salman
    Saastamoinen, Kimmo
    Ponomarenko, Sergey A.
    Friberg, Ari T.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2019, 15
  • [4] Submicron surface-plasmon-polariton perovskite laser
    Cho, Sangyeon
    Yang, Yi
    Soljacic, Marin
    Yun, Seok-Hyun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [5] Transmission properties of surface-plasmon-polariton coherence
    Aihara, Takuma
    Fukuda, Mitsuo
    APPLIED PHYSICS LETTERS, 2012, 100 (21)
  • [6] Basis for paraxial surface-plasmon-polariton packets
    Martinez-Herrero, Rosario
    Manjavacas, Alejandro
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [7] SURFACE-PLASMON-POLARITON DISPERSION OF SEMICONDUCTORS WITH DEPLETION LAYERS
    CONWELL, EM
    KAO, CC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (01): : 39 - 39
  • [8] Transfer of Information using Surface-Plasmon-Polariton Waves
    Agrahari, Rajan
    Lakhtakia, Akhlesh
    Jain, Pradip K.
    OPTICAL INTERCONNECTS XIX, 2019, 10924
  • [9] SURFACE-PLASMON-POLARITON DISPERSION OF SEMICONDUCTORS WITH ACCUMULATION LAYERS
    KAO, CC
    CONWELL, EM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (03): : 275 - 275
  • [10] Excitation of high density surface plasmon polariton vortex array
    Kuo, Chun-Fu
    Chu, Shu-Chun
    JOURNAL OF OPTICS, 2018, 20 (06)