Random patterns generated by random permutations of natural numbers

被引:2
|
作者
Oshanin, G.
Voituriez, R.
Nechaev, S.
Vasilyev, O.
Hivert, F.
机构
[1] Univ Paris 06, UMR 7600, F-75252 Paris, France
[2] Max Planck Inst Met Res, Dept Inhomogeneous Condensed Matter Theory, D-0569 Stuttgart, Germany
[3] Univ Paris 11, LPTMS, F-91405 Orsay, France
[4] Univ Rouen, LIFAR, LITIS, F-76801 St Etienne, France
来源
关键词
Random Walk; European Physical Journal Special Topic; Time Moment; Random Permutation; Local Height;
D O I
10.1140/epjst/e2007-00082-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We survey recent results on some one- and two-dimensional patterns generated by random permutations of natural numbers. In the first part, we discuss properties of random walks, evolving on a one-dimensional regular lattice in discrete time n, whose moves to the right or to the left are prescribed by the rise-and-descent sequence associated with a given random permutation. We determine exactly the probability of finding the trajectory of such a permutation-generated random walk at site X at time n, obtain the probability measure of different excursions and define the asymptotic distribution of the number of "U-turns" of the trajectories - permutation "peaks" and "through". In the second part, we focus on some statistical properties of surfaces obtained by randomly placing natural numbers 1, 2, 3,..., L on sites of a Id or 2d lattices containing L sites. We calculate the distribution function of the number of local "peaks" - sites the number at which is larger than the numbers appearing at nearest-neighboring sites and discuss surprising collective behavior emerging in this model.
引用
收藏
页码:143 / 157
页数:15
相关论文
共 50 条
  • [41] Random Permutations of a Regular Lattice
    Betz, Volker
    JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (06) : 1222 - 1248
  • [42] THE GENERATION OF RANDOM PERMUTATIONS ON THE FLY
    BRASSARD, G
    KANNAN, S
    INFORMATION PROCESSING LETTERS, 1988, 28 (04) : 207 - 212
  • [43] RANDOM PERMUTATIONS WITH CYCLE WEIGHTS
    Betz, Volker
    Ueltschi, Daniel
    Velenik, Yvan
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (01): : 312 - 331
  • [44] A NOTE ON GENERATING RANDOM PERMUTATIONS
    PAGE, ES
    THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1967, 16 (03): : 273 - &
  • [45] Indifferentiability of Truncated Random Permutations
    Choi, Wonseok
    Lee, Byeonghak
    Lee, Jooyoung
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2019, PT I, 2019, 11921 : 175 - 195
  • [46] Cycles in Mallows random permutations
    He, Jimmy
    Mueller, Tobias
    Verstraaten, Teun W.
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (04) : 1054 - 1099
  • [47] REGENERATIVE RANDOM PERMUTATIONS OF INTEGERS
    Pitman, Jim
    Tang, Wenpin
    ANNALS OF PROBABILITY, 2019, 47 (03): : 1378 - 1416
  • [48] CYCLIC STRUCTURE OF RANDOM PERMUTATIONS
    KOLCHIN, VF
    CHISTYAKOV, VP
    MATHEMATICAL NOTES, 1975, 18 (5-6) : 1139 - 1144
  • [49] Are random permutations spherically uniform?
    Perlman, Michael D.
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [50] Increasing permutations of random processes
    Zhukova E.E.
    Journal of Mathematical Sciences, 1998, 88 (1) : 43 - 52