REGENERATIVE RANDOM PERMUTATIONS OF INTEGERS

被引:16
|
作者
Pitman, Jim [1 ]
Tang, Wenpin [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
来源
ANNALS OF PROBABILITY | 2019年 / 47卷 / 03期
关键词
Bernoulli sieve; cycle structure; indecomposable permutations; Mallows permutations; regenerative processes; renewal processes; size biasing; LONGEST INCREASING SUBSEQUENCE; ASYMPTOTIC THEORY; HARMONIC-ANALYSIS; POINT-PROCESSES; CYCLE STRUCTURE; LIMIT MEASURES; EMPTY BOXES; NUMBER; PROBABILITIES; MAPPINGS;
D O I
10.1214/18-AOP1286
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Motivated by recent studies of large Mallows(q) permutations, we propose a class of random permutations of N+ and of Z, called regenerative permutations. Many previous results of the limiting Mallows(q) permutations are recovered and extended. Three special examples: blocked permutations, p-shifted permutations and p-biased permutations are studied.
引用
收藏
页码:1378 / 1416
页数:39
相关论文
共 50 条