A variant of the Jensen-Mercer operator inequality for superquadratic functions

被引:11
|
作者
Baric, J. [1 ]
Matkovic, A. [1 ]
Pecaric, J. [2 ]
机构
[1] Univ Split, Fac Elect Engn, Split 21000, Croatia
[2] Univ Zagreb, Fac Text Technol, Zagreb 10000, Croatia
关键词
Jensen-Mercer operator inequality; Superquadratic functions; Operator power means of Mercer's type; REFINEMENTS;
D O I
10.1016/j.mcm.2010.01.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A variant of the Jensen-Mercer operator inequality for superquadratic functions, which is a refinement of the Jensen-Mercer operator inequality for convex functions, is proved. The result obtained is used to refine some comparison inequalities between operator power and quasi-arithmetic means of Mercer's type. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1230 / 1239
页数:10
相关论文
共 50 条
  • [21] NOTE ON GENERALIZATION OF THE JENSEN-MERCER INEQUALITY BY TAYLOR'S POLYNOMIAL
    Matkovic, Anita
    Pecaric, Josip
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1379 - 1384
  • [22] JENSEN'S INEQUALITY FOR FUNCTIONS SUPERQUADRATIC ON THE COORDINATES
    Banic, S.
    Bakula, M. Klaricic
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (04): : 1365 - 1375
  • [23] BOUNDS FOR THE NORMALIZED JENSEN-MERCER FUNCTIONAL
    Baric, J.
    Matkovic, A.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (04): : 529 - 541
  • [24] Refinements of Jensen's inequality of Mercer's type for operator convex functions
    Matkovic, A.
    Pecaric, J.
    Peric, I.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (01): : 113 - 126
  • [25] New refinements of the Jensen-Mercer inequality associated to positive n-tuples
    Khan, M. Adil
    Pecaric, J.
    [J]. ARMENIAN JOURNAL OF MATHEMATICS, 2020, 12 (04): : 1 - 12
  • [26] Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator
    Liu, Jia-Bao
    Butt, Saad Ihsan
    Nasir, Jamshed
    Aslam, Adnan
    Fahad, Asfand
    Soontharanon, Jarunee
    [J]. AIMS MATHEMATICS, 2022, 7 (02): : 2123 - 2140
  • [27] ON SOME PROPERTIES OF JENSEN-MERCER'S FUNCTIONAL
    Krnic, Mario
    Lovricevic, Neda
    Pecaric, Josip
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (01): : 125 - 139
  • [28] IMPROVEMENT OF JENSEN-STEFFENSEN'S INEQUALITY FOR SUPERQUADRATIC FUNCTIONS
    Abramovich, Shoshana
    Ivelic, Slavica
    Pecaric, Josip E.
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2010, 4 (01): : 159 - 169
  • [29] New Study on the Quantum Midpoint-Type Inequalities for Twice q-Differentiable Functions via the Jensen-Mercer Inequality
    Butt, Saad Ihsan
    Umar, Muhammad
    Budak, Huseyin
    [J]. SYMMETRY-BASEL, 2023, 15 (05):
  • [30] Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications
    Butt, Saad Ihsan
    Agarwal, Praveen
    Yousaf, Saba
    Guirao, Juan L. G.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)