On the eigenvalues of the spatial sign covariance matrix in more than two dimensions

被引:15
|
作者
Duerre, Alexander [1 ]
Tyler, David E. [2 ]
Vogel, Daniel [3 ]
机构
[1] Tech Univ Dortmund, Fak Stat, D-44221 Dortmund, Germany
[2] Rutgers State Univ, Dept Stat & Biostat, Piscataway, NJ 08854 USA
[3] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
基金
美国国家科学基金会;
关键词
Elliptical distribution; Spatial Kendall's tau matrix; Spatial sign; PRINCIPAL COMPONENT ANALYSIS;
D O I
10.1016/j.spl.2016.01.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We gather several results on the eigenvalues of the spatial sign covariance matrix of an elliptical distribution. It is shown that the eigenvalues are a one-to-one function of the eigenvalues of the shape matrix and that they are closer together than the latter. We further provide a one-dimensional integral representation of the eigenvalues, which facilitates their numerical computation. (C) 2016 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:80 / 85
页数:6
相关论文
共 50 条
  • [31] An Approximation for the Test of the Equality of the Smallest Eigenvalues of a Covariance Matrix
    Schott, James R.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (24) : 4439 - 4443
  • [32] On the smallest eigenvalues of covariance matrices of multivariate spatial processes
    Bachoc, Franois
    Furrer, Reinhard
    STAT, 2016, 5 (01): : 102 - 107
  • [33] A New Approach for Brain Source Position Estimation Based on the Eigenvalues of the EEG Sensors Spatial Covariance Matrix
    Cruz, Lucas F.
    Magalhaes, Marcela G.
    Kunzler, Jonas A.
    Coelho, Andre A. S.
    Lemos, Rodrigo P.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 2, 2019, 68 (02): : 271 - 274
  • [34] More on the Kronecker Structured Covariance Matrix
    Singull, Martin
    Ahmad, M. Rauf
    von Rosen, Dietrich
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (13-14) : 2512 - 2523
  • [35] Bounds on Eigenvalues of a Spatial Correlation Matrix
    Choi, Junil
    Love, David J.
    IEEE COMMUNICATIONS LETTERS, 2014, 18 (08) : 1391 - 1394
  • [36] A better approximation of moments of the eigenvalues and eigenvectors of the sample covariance matrix
    Enguix-Gonzalez, A.
    Moreno-Rebollo, J. L.
    Munoz-Pichardo, J. M.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 142 : 133 - 143
  • [37] Is random tracking more difficult in two dimensions than one dimension?
    Jones, RD
    Watson, RW
    PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 20, PTS 1-6: BIOMEDICAL ENGINEERING TOWARDS THE YEAR 2000 AND BEYOND, 1998, 20 : 2362 - 2365
  • [38] Sample Covariance Matrix Eigenvalues Based Blind SNR Estimation
    Hamid, Mohamed
    Bjorsell, Niclas
    Ben Slimane, Slimane
    2014 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) PROCEEDINGS, 2014, : 718 - 722
  • [39] A CFAR Detector for Mismatched Eigenvalues of Training Sample Covariance Matrix
    Raghavan, R. S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (17) : 4624 - 4635
  • [40] On some multivariate sign tests for scatter matrix eigenvalues
    Bernard, Gaspard
    Verdebout, Thomas
    ECONOMETRICS AND STATISTICS, 2024, 29 : 252 - 260