A note on weak convergence of general halfspace depth trimmed means

被引:1
|
作者
Wang, Jin [1 ]
机构
[1] No Arizona Univ, Dept Math & Stat, Flagstaff, AZ 86011 USA
关键词
Halfspace depth; Multivariate trimmed mean; Weak convergence; Multivariate analysis; TUKEY DEPTH; MULTIVARIATE; ASYMPTOTICS;
D O I
10.1016/j.spl.2018.07.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note, we restudy the general halfspace depth trimmed means and establish the weak convergence of their sample versions, which extends the result of Masse (2009) for dimensions one and two to any dimension. The asymptotic distribution of the Donoho (1982) halfspace depth trimmed mean is obtained as a special case and concretized for elliptically symmetric distributions. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 56
页数:7
相关论文
共 50 条
  • [1] Uniform convergence rates for halfspace depth
    Burr, Michael A.
    Fabrizio, Robert J.
    STATISTICS & PROBABILITY LETTERS, 2017, 124 : 33 - 40
  • [2] Uniform convergence rates for the approximated halfspace and projection depth
    Nagy, Stanislav
    Dyckerhoff, Rainer
    Mozharovskyi, Pavlo
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3939 - 3975
  • [3] Multivariate trimmed means based on the Tukey depth
    Masse, Jean-Claude
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 366 - 384
  • [4] A note on weak convergence
    R. V. Ramamoorthi
    B. V. Rao
    J. Sethuraman
    Sankhya A, 2012, 74 (2): : 269 - 276
  • [5] A note on weak convergence
    Ramamoorthi, R. V.
    Rao, B. V.
    Sethuraman, J.
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2012, 74 (02): : 269 - 276
  • [6] A note on testing hypotheses about trimmed means
    Wilcox, RR
    BIOMETRICAL JOURNAL, 1996, 38 (02) : 173 - 180
  • [7] A COMPLETE SOLUTION FOR WEAK CONVERGENCE OF HEAVILY TRIMMED SUMS
    程士宏
    Science China Mathematics, 1992, (06) : 641 - 656
  • [8] A COMPLETE SOLUTION FOR WEAK-CONVERGENCE OF HEAVILY TRIMMED SUMS
    CHENG, SH
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1992, 35 (06): : 641 - 656
  • [9] Weak* convergence of operator means
    Romanov, A. V.
    IZVESTIYA MATHEMATICS, 2011, 75 (06) : 1165 - 1183
  • [10] NOTE ON WEAK SEQUENTIAL CONVERGENCE
    MCWILLIAMS, RD
    PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (01) : 333 - &