Data depth;
Halfspace depth;
Convergence;
Glivenko-Cantelli;
Vapnik-t'ervonenkis;
ASYMPTOTICS;
CONTOURS;
D O I:
10.1016/j.spl.2017.01.002
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Data depth functions are a generalization of one-dimensional order statistics and medians to real spaces of dimension greater than one; in particular, a data depth function quantifies the centrality of a point with respect to a data set or a probability distribution. One of the most commonly studied data depth functions is halfspace depth. Halfspace depth is of interest to computational geometers because it is highly geometric, and it is of interest to statisticians because it shares many desirable theoretical properties with the one-dimensional median. It is known that as the sample size increases, the halfspace depth for a sample converges to the halfspace depth for the underlying distribution, almost surely. In this paper, we use the geometry and structure of halfspace depth to reduce a high dimensional problem into many one-dimensional problems. This bound requires only mild assumptions on the distribution, and it leads to an improved convergence rate when the underlying distribution decays exponentially, i.e., the probability that a sample point has magnitude at least R is O(exp(-lambda R-2/2)). We also provide examples and show that our ;bounds are tight. (C) 2017 Elsevier B.V. All rights reserved.
机构:
Charles Univ Prague, Fac Math & Phys, Dept Probabil & Math Stat, Prague, Czech RepublicCharles Univ Prague, Fac Math & Phys, Dept Probabil & Math Stat, Prague, Czech Republic
Nagy, Stanislav
Dyckerhoff, Rainer
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cologne, Inst Econometr & Stat, Cologne, GermanyCharles Univ Prague, Fac Math & Phys, Dept Probabil & Math Stat, Prague, Czech Republic
Dyckerhoff, Rainer
Mozharovskyi, Pavlo
论文数: 0引用数: 0
h-index: 0
机构:
Telecom Paris, Inst Polytech Paris, LTCI, Paris, FranceCharles Univ Prague, Fac Math & Phys, Dept Probabil & Math Stat, Prague, Czech Republic
机构:
Univ Karlovy Praze, Matemat Fyzikalni Fak, Katedra Pravdepodobnosti Matemat Stat, Prague 18675 8, Czech RepublicUniv Karlovy Praze, Matemat Fyzikalni Fak, Katedra Pravdepodobnosti Matemat Stat, Prague 18675 8, Czech Republic
Hlubinka, Daniel
Kotik, Lukas
论文数: 0引用数: 0
h-index: 0
机构:
Acad Sci Czech Republic, Inst Informat Theory & Automat, CR-18208 Prague 8, Czech RepublicUniv Karlovy Praze, Matemat Fyzikalni Fak, Katedra Pravdepodobnosti Matemat Stat, Prague 18675 8, Czech Republic
Kotik, Lukas
Vencalek, Ondrej
论文数: 0引用数: 0
h-index: 0
机构:
Univ Karlovy Praze, Matemat Fyzikalni Fak, Katedra Pravdepodobnosti Matemat Stat, Prague 18675 8, Czech RepublicUniv Karlovy Praze, Matemat Fyzikalni Fak, Katedra Pravdepodobnosti Matemat Stat, Prague 18675 8, Czech Republic
机构:
Jiangxi Univ Finance & Econ, Sch Stat, Nanchang, Jiangxi, Peoples R China
Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48823 USAJiangxi Univ Finance & Econ, Sch Stat, Nanchang, Jiangxi, Peoples R China
Liu, Xiaohui
Zuo, Yijun
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48823 USAJiangxi Univ Finance & Econ, Sch Stat, Nanchang, Jiangxi, Peoples R China