Heterodyne Detection System for Nanoparticle Detection using Coherent Fourier Scatterometry

被引:1
|
作者
Kolenov, D. [1 ]
Horsten, R. C. [1 ]
Pereira, S. F. [1 ]
机构
[1] Delft Univ Technol, Fac Appl Sci, Imaging Phys Dept, Opt Res Grp, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
关键词
nanoparticle detection; heterodyne detection; coherent Fourier scatterometry; wafer inspection; PARTICLES;
D O I
10.1117/12.2525587
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Coherent Fourier Scatterometry (CFS) is a scanning optical technique that is particularly suitable for nanoparticle detection. Inspection of wafer surfaces is one of the critical bottle-necks for high yield in the production of semiconductor chips. Ideally, inspection systems are required to work fast, be sensitive, and should not thermally damage the samples with an excess of illuminating light power. The sensitivity of detection of nanoparticles, attributed to the smallest size of the scatterer that can be detected, is severely limited by noise. The optical readout of the scatterometer consists of a bi-cell (a split photodetector) that collects the scatterred light from the surface to be inspected while the latter is scanned in the lateral direction (2D scan). The difference voltage signal resulting from integrating and subtracting the two halves of the bi-cell is recorded as a function of the lateral scanning position of the sample surface. The bi-cell has two functions: first, it allows us to acquire signals in a fast manner, and second, it eliminates effects due to substrate spurious reflections, which is usually a big issue in dark field based particle detection systems. In this paper, we present an extension of the original CFS detection system by incorporating a heterodyne technique to the detection system. We show the implementation of the new detector system as well as a comparative signal-to-noise ratio (SNR) gain studies that are used to determine the suitable frequencies and waveforms for both modulation and reference signals. We demonstrate the detection of polystyrene nanoparticles with a diameter of 80 nm, which were deposited on top of a silicon wafer, with high SNR at low illuminating light power. The experiments were performed with a diode laser at the wavelength of 405 nm. In this particular particle size, we have observed an improvement of the SNR of about 45 dB as compared to the original detection system of the CFS. Although the proposed heterodyne CFS technique already shows excellent performance for detection of polystyrene nanoparticles on silicon wafer, there is still room for improving the sensitivity towards even smaller particles, as discussed in the outlook and conclusions section.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Multi-beam coherent Fourier scatterometry
    Soman, S.
    Horsten, R. C.
    Scholte, T.
    Pereira, S. F.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)
  • [32] Optical singularity assisted method for accurate parameter detection of step-shaped nanostructure in coherent Fourier scatterometry
    Dou, Xiujie
    Min, Changjun
    Zhang, Yuquan
    Pereira, S. F.
    Yuan, Xiaocong
    OPTICS EXPRESS, 2022, 30 (16) : 29287 - 29294
  • [33] QAM Coherent Subcarrier Multiplexing System Based on Heterodyne Detection using Intermediate Frequency Carrier Modulation
    Zhu, Ran
    Xu, Kun
    Zhang, Ye
    Li, Yan
    Wu, Jian
    Hong, Xiaobin
    Lin, Jintong
    2008 INTERNATIONAL TOPICAL MEETINGS ON MICROWAVE PHOTONICS AND 2008 ASIA-PACIFIC MICROWAVE PHOTONICS CONFERENCE, 2008, : 165 - 168
  • [34] Direct detection of polystyrene equivalent nanoparticles with diameter of 21 nm (∼λ/19) using coherent Fourier scatterometry (vol 29, pg 16487, 2021)
    KOLENO, D., V
    ZADEH, I. E.
    HORSTEN, R. C.
    PEREIRA, S. F.
    OPTICS EXPRESS, 2022, 30 (16): : 29841 - 29843
  • [35] Phase-Drift-Suppression in Heterodyne Detection Using Coherent Light Source
    Manabu Sato
    Yoshifumi Ikeda
    Masakazu Endo
    Shinji Fukuda
    Naohiro Tanno
    Optical Review, 2001, 8 : 37 - 42
  • [36] Phase-drift-suppression in heterodyne detection using coherent light source
    Sato, M
    Ikeda, Y
    Endo, M
    Fukuda, S
    Tanno, N
    OPTICAL REVIEW, 2001, 8 (01) : 37 - 42
  • [37] Experimental Demonstration of Coherent OCDMA using Spectral Line Pairing and Heterodyne Detection
    Yang, Yi
    Petrillo, Keith G.
    Ting, Hong-Fu
    Khurgin, Jacob B.
    Cooper, A. Brinton
    Foster, Mark A.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [38] HETERODYNE-DETECTION FOR COHERENT RAMAN-SPECTROSCOPY
    EESLEY, GL
    SONG, JJ
    LEVENSON, MD
    TOLLES, WM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (11): : 1287 - 1288
  • [39] Phase retrieval between overlapping orders in coherent Fourier scatterometry using scanning
    Kumar, N.
    El Gawhary, O.
    Roy, S.
    Pereira, S. F.
    Urbach, H. P.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2013, 8
  • [40] Convolutional neural network applied for nanoparticle classification using coherent scatterometry data
    Kolenov, D.
    Davidse, D.
    Le Cam, J.
    Pereira, S. F.
    APPLIED OPTICS, 2020, 59 (27) : 8426 - 8433