Cooperative Spectral-Spatial Attention Dense Network for Hyperspectral Image Classification

被引:24
|
作者
Dong, Zhimin [1 ]
Cai, Yaoming [1 ]
Cai, Zhihua [1 ]
Liu, Xiaobo [2 ]
Yang, Zhaoyu [1 ]
Zhuge, Mingchen [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Training; Hyperspectral imaging; Geology; Kernel; Solid modeling; 3-D dense net; center loss; hyperspectral image (HIS) classification (HSIC); spectral– spatial attention mechanisms;
D O I
10.1109/LGRS.2020.2989437
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, deep learning-based methods have made great progress in hyperspectral image (HSI) classification (HSIC). Different from ordinary images, the intrinsic complexity of HSIs data still limits the performance of many common convolutional neural network (CNN) models. Thus, the network architecture becomes more and more complex to extract discriminative spectral-spatial features. For instance, 3-D CNN usually has a large number of trainable parameters, thus increasing the computational complexity of the HSIC. In this letter, we designed a cooperative spectral-spatial attention dense network (CS(2)ADN) that takes raw 3-D HSI data as input data. Specifically, the attention module consists of spectral and spatial axes, by which the salient spectral-spatial features will be emphasized. Furthermore, we combined these attention modules with the dense connection, which is termed as the lightweight dense block; it has a lower computation cost and achieves better classification performance. At the same time, we introduced the center loss, by jointly using the supervision of the center loss and the softmax loss, where the discriminative features could be clearly observed, particularly for small data sets. Experimental results on the biased and unbiased HSI data show that our method outperforms several state-of-the-art methods in HSIC with small training samples.
引用
收藏
页码:866 / 870
页数:5
相关论文
共 50 条
  • [1] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [2] Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification
    Dang, Lanxue
    Weng, Libo
    Dong, Weichuan
    Li, Shenshen
    Hou, Yane
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [3] Spectral-spatial attention bilateral network for hyperspectral image classification
    Yang X.
    Chi Y.
    Zhou Y.
    Wang Y.
    National Remote Sensing Bulletin, 2023, 27 (11) : 2565 - 2578
  • [4] Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Zhu, Minghao
    Jiao, Licheng
    Liu, Fang
    Yang, Shuyuan
    Wang, Jianing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 449 - 462
  • [5] Lightweight Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Cui, Ying
    Xia, Jinbiao
    Wang, Zhiteng
    Gao, Shan
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Expansion Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Wang, Shuo
    Liu, Zhengjun
    Chen, Yiming
    Hou, Chengchao
    Liu, Aixia
    Zhang, Zhenbei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6411 - 6427
  • [7] SPECTRAL-SPATIAL FUSED ATTENTION NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Ningyang
    Wang, Zhaohui
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3832 - 3836
  • [8] A Dense Pyramidal Residual Network with a Tandem Spectral-Spatial Attention Mechanism for Hyperspectral Image Classification
    Guan, Yunlan
    Li, Zixuan
    Wang, Nan
    SENSORS, 2025, 25 (06)
  • [9] SSCDenseNet: A Spectral-Spatial Convolutional Dense Network for Hyperspectral Image Classification
    Liu Q.-C.
    Xiao L.
    Liu F.
    Xu J.-H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (04): : 751 - 762
  • [10] Enhanced Spectral-Spatial Residual Attention Network for Hyperspectral Image Classification
    Zhan, Yanting
    Wu, Ke
    Dong, Yanni
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 7171 - 7186