Enhanced Spectral-Spatial Residual Attention Network for Hyperspectral Image Classification

被引:11
|
作者
Zhan, Yanting [1 ]
Wu, Ke [1 ]
Dong, Yanni [1 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China
关键词
Feature extraction; Data mining; Training; Logic gates; Convolution; Three-dimensional displays; Semantics; Hyperspectral image classification (HSIC); long-short term memory (LSTM); residual network (ResNet); spectral-spatial attention network (SSAN); NEURAL-NETWORKS; ALGORITHM; RESNET;
D O I
10.1109/JSTARS.2022.3197934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Deep learning has achieved good performance in hyperspectral image classification (HSIC). Many methods based on deep learning use deep and complex network structures to extract rich spectral and spatial features of hyperspectral images (HSIs) with high accuracy. During the process, how to accurately extract the features and information from pixel blocks in HSIs is important. All of the spectral features are treated equally in classification, and the input of the network often contains much useless pixel information, leading to a low classification result. To solve this problem, an enhanced spectral-spatial residual attention network (ESSRAN) is proposed for HSIC in this article. In the proposed network, the spectral-spatial attention network (SSAN), residual network (ResNet) and long-short term memory (LSTM) are combined to extract more discriminative spectral and spatial features. More specifically, SSAN is first applied to extract image features by using the spectral attention module to emphasize useful bands and suppress useless bands. The spatial attention module is used to emphasize pixels that have same category with the central pixel. Then, these obtained features are fed into an improved ResNet, which adopts LSTM to learn representative high-level semantic features of the spectral sequences, since the use of ResNet can prevent gradient disappearance and explosion. The proposed ESSRAN model is implemented on three commonly used HSI datasets and compared to some state-of-the-art methods. The results confirm that ESSRAN effectively improves accuracy.
引用
收藏
页码:7171 / 7186
页数:16
相关论文
共 50 条
  • [1] Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Zhu, Minghao
    Jiao, Licheng
    Liu, Fang
    Yang, Shuyuan
    Wang, Jianing
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 449 - 462
  • [2] A Deep Spectral-Spatial Residual Attention Network for Hyperspectral Image Classification
    Chhapariya, Koushikey
    Buddhiraju, Krishna Mohan
    Kumar, Anil
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15393 - 15406
  • [3] Spectral-Spatial Residual Graph Attention Network for Hyperspectral Image Classification
    Xu, Kejie
    Zhao, Yue
    Zhang, Lingming
    Gao, Chenqiang
    Huang, Hong
    [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [4] Spectral-Spatial Residual Graph Attention Network for Hyperspectral Image Classification
    Xu, Kejie
    Zhao, Yue
    Zhang, Lingming
    Gao, Chenqiang
    Huang, Hong
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [5] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [6] Spectral-spatial Attention Residual Networks for Hyperspectral Image Classification
    Wang Feifei
    Zhao Huijie
    Li Na
    Li Siyuan
    Cai Yu
    [J]. ACTA PHOTONICA SINICA, 2023, 52 (12)
  • [7] DISCRIMINATIVE SPECTRAL-SPATIAL ATTENTION-AWARE RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Cai, Yaoming
    Dong, Zhimin
    Cai, Zhihua
    Liu, Xiaobo
    Wang, Guangjun
    [J]. 2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [8] SPECTRAL-SPATIAL MULTISCALE RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    He, Shi
    Jing, Haitao
    Xue, Huazhu
    [J]. XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 389 - 395
  • [9] Multipath Residual Network for Spectral-Spatial Hyperspectral Image Classification
    Meng, Zhe
    Li, Lingling
    Tang, Xu
    Feng, Zhixi
    Jiao, Licheng
    Liang, Miaomiao
    [J]. REMOTE SENSING, 2019, 11 (16)
  • [10] Spectral-spatial attention bilateral network for hyperspectral image classification
    Yang, Xing
    Chi, Yue
    Zhou, Yatong
    Wang, Yang
    [J]. National Remote Sensing Bulletin, 2023, 27 (11) : 2565 - 2578