Cooperative Spectral-Spatial Attention Dense Network for Hyperspectral Image Classification

被引:24
|
作者
Dong, Zhimin [1 ]
Cai, Yaoming [1 ]
Cai, Zhihua [1 ]
Liu, Xiaobo [2 ]
Yang, Zhaoyu [1 ]
Zhuge, Mingchen [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Training; Hyperspectral imaging; Geology; Kernel; Solid modeling; 3-D dense net; center loss; hyperspectral image (HIS) classification (HSIC); spectral– spatial attention mechanisms;
D O I
10.1109/LGRS.2020.2989437
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, deep learning-based methods have made great progress in hyperspectral image (HSI) classification (HSIC). Different from ordinary images, the intrinsic complexity of HSIs data still limits the performance of many common convolutional neural network (CNN) models. Thus, the network architecture becomes more and more complex to extract discriminative spectral-spatial features. For instance, 3-D CNN usually has a large number of trainable parameters, thus increasing the computational complexity of the HSIC. In this letter, we designed a cooperative spectral-spatial attention dense network (CS(2)ADN) that takes raw 3-D HSI data as input data. Specifically, the attention module consists of spectral and spatial axes, by which the salient spectral-spatial features will be emphasized. Furthermore, we combined these attention modules with the dense connection, which is termed as the lightweight dense block; it has a lower computation cost and achieves better classification performance. At the same time, we introduced the center loss, by jointly using the supervision of the center loss and the softmax loss, where the discriminative features could be clearly observed, particularly for small data sets. Experimental results on the biased and unbiased HSI data show that our method outperforms several state-of-the-art methods in HSIC with small training samples.
引用
收藏
页码:866 / 870
页数:5
相关论文
共 50 条
  • [31] Spectral-Spatial Score Fusion Attention Network for Hyperspectral Image Classification With Limited Samples
    Cheng, Shun
    Xue, Zhaohui
    Li, Ziyu
    Xu, Aijun
    Su, Hongjun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 14521 - 14542
  • [32] DISCRIMINATIVE SPECTRAL-SPATIAL ATTENTION-AWARE RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Cai, Yaoming
    Dong, Zhimin
    Cai, Zhihua
    Liu, Xiaobo
    Wang, Guangjun
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [33] Spectral-Spatial Domain Attention Network for Hyperspectral Image Few-Shot Classification
    Zhang, Zhongqiang
    Gao, Dahua
    Liu, Danhua
    Shi, Guangming
    REMOTE SENSING, 2024, 16 (03)
  • [34] Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
    Cheng, Shuli
    Wang, Liejun
    Du, Anyu
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [35] SPECTRAL-SPATIAL MULTISCALE RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    He, Shi
    Jing, Haitao
    Xue, Huazhu
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 389 - 395
  • [36] Multipath Residual Network for Spectral-Spatial Hyperspectral Image Classification
    Meng, Zhe
    Li, Lingling
    Tang, Xu
    Feng, Zhixi
    Jiao, Licheng
    Liang, Miaomiao
    REMOTE SENSING, 2019, 11 (16)
  • [37] Classification of hyperspectral images by spectral-spatial dense-residual network
    Cai, Yiheng
    Guo, Yajun
    Lang, Shinan
    Liu, Jiaqi
    Hu, Shaobin
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (03)
  • [38] Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification
    Houari, Youcef Moudjib
    Duan, Haibin
    Zhang, Baochang
    Maher, Ali
    2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 221 - 225
  • [39] A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification
    Liao, Diling
    Shi, Cuiping
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [40] Hyperspectral Image Classification Based on Nonlinear Spectral-Spatial Network
    Pan, Bin
    Shi, Zhenwei
    Zhang, Ning
    Xie, Shaobiao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1782 - 1786