Accelerating Robot Dynamics Gradients on a CPU, GPU, and FPGA

被引:22
|
作者
Plancher, Brian [1 ]
Neuman, Sabrina M. [1 ]
Bourgeat, Thomas [2 ]
Kuindersma, Scott [1 ,3 ]
Devadas, Srinivas [2 ]
Reddi, Vijay Janapa [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02478 USA
[2] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Boston Dynam, Waltham, MA 02451 USA
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2021年 / 6卷 / 02期
基金
美国国家科学基金会;
关键词
Computer architecture for robotics and automation; hardware-software integration in robotics; dynamics; MODEL-PREDICTIVE CONTROL; TRAJECTORY OPTIMIZATION;
D O I
10.1109/LRA.2021.3057845
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Computing the gradient of rigid body dynamics is a central operation in many state-of-the-art planning and control algorithms in robotics. Parallel computing platforms such as GPUs and FPGAs can offer performance gains for algorithms with hardware-compatible computational structures. In this letter, we detail the designs of three faster than state-of-the-art implementations of the gradient of rigid body dynamics on a CPU, GPU, and FPGA. Our optimized FPGA and GPU implementations provide as much as a 3.0x end-to-end speedup over our optimized CPU implementation by refactoring the algorithm to exploit its computational features, e.g., parallelism at different granularities. We also find that the relative performance across hardware platforms depends on the number of parallel gradient evaluations required.
引用
收藏
页码:2335 / 2342
页数:8
相关论文
共 50 条
  • [41] Accelerating aerial image simulation using improved CPU/GPU collaborative computing
    Zhang, Fan
    Hu, Chen
    Wu, Pei-Ci
    Zhang, Hongbo
    Wong, Martin D. F.
    COMPUTERS & ELECTRICAL ENGINEERING, 2015, 46 : 176 - 189
  • [42] Accelerating Equi-Join on a CPU-FPGA Heterogeneous Platform
    Chen, Ren
    Prasanna, Viktor K.
    2016 IEEE 24TH ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2016, : 212 - 219
  • [43] Accelerating Real-Valued FFT on CPU-FPGA Platforms
    Qian, Zhuo
    Gan, Guoyou
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (08) : 2532 - 2536
  • [44] Accelerating Proximal Policy Optimization on CPU-FPGA Heterogeneous Platforms
    Meng, Yuan
    Kuppannagari, Sanmukh
    Prasanna, Viktor
    28TH IEEE INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2020, : 19 - 27
  • [45] Scalable molecular dynamics on CPU and GPU architectures with NAMD
    Phillips, James C.
    Hardy, David J.
    Maia, Julio D. C.
    Stone, John E.
    Ribeiro, Joao, V
    Bernardi, Rafael C.
    Buch, Ronak
    Fiorin, Giacomo
    Henin, Jerome
    Jiang, Wei
    McGreevy, Ryan
    Melo, Marcelo C. R.
    Radak, Brian K.
    Skeel, Robert D.
    Singharoy, Abhishek
    Wang, Yi
    Roux, Benoit
    Aksimentiev, Aleksei
    Luthey-Schulten, Zaida
    Kale, Laxmikant, V
    Schulten, Klaus
    Chipot, Christophe
    Tajkhorshid, Emad
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (04):
  • [46] FusionFlow: Accelerating Data Preprocessing for Machine Learning with CPU-GPU Cooperation
    Kim, Taeyoon
    Park, ChanHo
    Mukimbekov, Mansur
    Hong, Heelim
    Kim, Minseok
    Jin, Ze
    Kim, Changdae
    Shin, Ji-Yong
    Jeon, Myeongjae
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 17 (04): : 863 - 876
  • [47] Accelerating image convolution filtering algorithms on integrated CPU-GPU architectures
    Zhou, Yi
    He, Fazhi
    Qiu, Yimin
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (03)
  • [48] Accelerating Iterative Protein Sequence Alignment on a Heterogeneous GPU-CPU Platform
    Said, Mai
    Safar, Mona
    Taher, Whamed
    Wahba, Ayman
    2016 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS 2016), 2016, : 403 - 410
  • [49] A Unified Architecture for Accelerating Distributed DNN Training in Heterogeneous GPU/CPU Clusters
    Jiang, Yimin
    Zhu, Yibo
    Lan, Chang
    Yi, Bairen
    Cui, Yong
    Guo, Chuanxiong
    PROCEEDINGS OF THE 14TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDI '20), 2020, : 463 - 479
  • [50] Accelerating Phase Correlation functions using GPU and FPGA: A comparison study
    Matsuo, Kentaro
    Hamada, Tsuyoshi
    Miyoshi, Masayuki
    Shibata, Yuichiro
    Oguri, Kiyoshi
    PROCEEDINGS OF THE 2009 NASA/ESA CONFERENCE ON ADAPTIVE HARDWARE AND SYSTEMS, 2009, : 433 - 438