The solidification behavior of the AZ61 magnesium alloy during electromagnetic vibration processing

被引:39
|
作者
Li, Mingjun [1 ]
Tamura, Takuya [1 ]
Omura, Naoki [1 ]
Miwa, Kenji [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Mat Res Inst Sustainable Dev, Nagoya, Aichi 4638560, Japan
关键词
AZ61 magnesium alloy; Electromagnetic vibration; XRD; Melt flow; Solidification; GRAIN-REFINEMENT; ALUMINUM-ALLOYS; MAGNETIC-FIELDS; FREQUENCY; AL; MICROSTRUCTURE; INTENSITY; STATE; METAL;
D O I
10.1016/j.jallcom.2010.01.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present study, we solidified the magnesium-based AZ61 alloy using an electromagnetic vibration technique and investigated the microstructure development as a function of vibration frequency. The microstructure evolution was quantitatively examined in terms of the total average grain size and the individual grain size distribution. The texture was profiled under two different vibration conditions. With respect to the microstructure formation, one can find that a significant difference arises in electrical resistivity between a primary solid and its surrounding liquid in the mushy zone of the alloy, making the solid move faster than the liquid and thus generating uncoupled motion, from which melt flow may be initiated. The influence of this kind non-synchronous motion on microstructure formation is discussed as a function of vibration frequency when considering the intensity of melt flow during EMV processing. For the Mg-based alloy with a hexagonal closed-packed crystal lattice, it is subject to magnetization torque due to the anisotropic magnetic susceptibility along c-axis and a,b-axes. The Lorentz force induces melt flow that stirs the semisolid slurry to form random textures while the magnetization torque suppresses melt flow that rotates crystals to align along their easy magnetization direction. The resultant structure and texture can be well elucidated when considering the competition of two kinds of force under two different vibration conditions by terminating the vibration at different temperatures during processing. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:116 / 122
页数:7
相关论文
共 50 条
  • [41] Thixotropic deformation behavior of semi-solid AZ61 magnesium alloy during compression process
    Yan, Hong
    Zhou, Bingfen
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 132 (1-2): : 179 - 182
  • [42] Deformation behavior of AZ61 magnesium alloy systematically rolled and annealed at 450 °C
    Sulkowski, B.
    Palka, P.
    KOVOVE MATERIALY-METALLIC MATERIALS, 2016, 54 (03): : 147 - 151
  • [43] Superplasticity in fine-grained AZ61 magnesium alloy
    Kim, WJ
    Chung, SW
    METALS AND MATERIALS INTERNATIONAL, 2000, 6 (03) : 255 - 259
  • [44] Effect of preheat on TIG welding of AZ61 magnesium alloy
    Jun Shen
    Nan Xu
    International Journal of Minerals, Metallurgy, and Materials, 2012, 19 : 360 - 363
  • [45] Formation of Stress Cracking in an AZ61 Magnesium Alloy Joint
    Shen, Jun
    Li, Yang
    Xie, Xiong
    Liu, Min
    MATERIALS AND MANUFACTURING PROCESSES, 2014, 29 (02) : 188 - 193
  • [46] Evaluation of the Effects of SiCp on Hot Deformation Behavior and Microstructure of AZ61 Magnesium Alloy
    Yu-Chih Tzeng
    Hsieh Yi-Chiuan
    Journal of Materials Engineering and Performance, 2024, 33 : 1919 - 1930
  • [47] Observations and modeling of the small fatigue crack behavior of an extruded AZ61 magnesium alloy
    Bernard, J. D.
    Jordon, J. B.
    Lugo, M.
    Hughes, J. M.
    Rayborn, D. C.
    Horstemeyer, M. F.
    INTERNATIONAL JOURNAL OF FATIGUE, 2013, 52 : 20 - 29
  • [48] Superplasticity in fine-grained AZ61 magnesium alloy
    W. J. Kim
    S. W. Chung
    Metals and Materials, 2000, 6 : 255 - 259
  • [49] GRAIN REFINEMENT OF AZ61 MAGNESIUM ALLOY BY ECAP PROCESS
    Hilser, Ondrej
    Rusz, Stanislav
    Tanski, Tomasz
    Snopinski, Przemyslaw
    Dzugan, Jan
    METAL 2016: 25TH ANNIVERSARY INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, 2016, : 386 - 391
  • [50] Optimum hot forming temperature of AZ61 magnesium alloy
    Carsi, Manuel
    Alonso, Manuel
    Castellanos, Jesus
    Ruano, Oscar A.
    MATERIALS SCIENCE AND TECHNOLOGY, 2018, 34 (12) : 1425 - 1432