The solidification behavior of the AZ61 magnesium alloy during electromagnetic vibration processing

被引:39
|
作者
Li, Mingjun [1 ]
Tamura, Takuya [1 ]
Omura, Naoki [1 ]
Miwa, Kenji [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Mat Res Inst Sustainable Dev, Nagoya, Aichi 4638560, Japan
关键词
AZ61 magnesium alloy; Electromagnetic vibration; XRD; Melt flow; Solidification; GRAIN-REFINEMENT; ALUMINUM-ALLOYS; MAGNETIC-FIELDS; FREQUENCY; AL; MICROSTRUCTURE; INTENSITY; STATE; METAL;
D O I
10.1016/j.jallcom.2010.01.025
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present study, we solidified the magnesium-based AZ61 alloy using an electromagnetic vibration technique and investigated the microstructure development as a function of vibration frequency. The microstructure evolution was quantitatively examined in terms of the total average grain size and the individual grain size distribution. The texture was profiled under two different vibration conditions. With respect to the microstructure formation, one can find that a significant difference arises in electrical resistivity between a primary solid and its surrounding liquid in the mushy zone of the alloy, making the solid move faster than the liquid and thus generating uncoupled motion, from which melt flow may be initiated. The influence of this kind non-synchronous motion on microstructure formation is discussed as a function of vibration frequency when considering the intensity of melt flow during EMV processing. For the Mg-based alloy with a hexagonal closed-packed crystal lattice, it is subject to magnetization torque due to the anisotropic magnetic susceptibility along c-axis and a,b-axes. The Lorentz force induces melt flow that stirs the semisolid slurry to form random textures while the magnetization torque suppresses melt flow that rotates crystals to align along their easy magnetization direction. The resultant structure and texture can be well elucidated when considering the competition of two kinds of force under two different vibration conditions by terminating the vibration at different temperatures during processing. (c) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:116 / 122
页数:7
相关论文
共 50 条
  • [31] Grain refinement of wrought AZ61 magnesium alloy
    Zhou, HT
    Liu, CM
    Wang, QD
    Ding, WJ
    MAGNESIUM TECHNOLOGY 2005, 2005, : 91 - 95
  • [32] A FLOW STRESS MODEL FOR AZ61 MAGNESIUM ALLOY
    H.T.Zhou
    X.Q.Zeng
    Q.D Wang
    W.J.Ding State Key Laboratory of Metal Matrix Composite
    Acta Metallurgica Sinica(English Letters), 2004, (02) : 155 - 160
  • [33] Corrosion fatigue behavior of conversion coated and painted AZ61 magnesium alloy
    Bhuiyan, Md. Shahnewaz
    Mutoh, Yoshiharu
    INTERNATIONAL JOURNAL OF FATIGUE, 2011, 33 (12) : 1548 - 1556
  • [34] Mechanical properties and failure behavior of AZ61 magnesium alloy at high temperatures
    Wenjun Liu
    Bin Jiang
    Suqin Luo
    Siqiang Chen
    Fusheng Pan
    Journal of Materials Science, 2018, 53 : 8536 - 8544
  • [35] Age hardening behavior of AZ61 alloy
    Ruhela, Kartik
    Gaurav, Gaurav
    Chandra, Navish
    Rawal, Rahul
    Sharma, Siddharth
    MATERIALS TODAY-PROCEEDINGS, 2022, 64 : 1333 - 1338
  • [36] Effect of machining process conditions on fatigue behavior of magnesium alloy AZ61
    Kakiuchi T.
    Uematsu Y.
    Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68 (12) : 882 - 889
  • [37] Mechanical properties and failure behavior of AZ61 magnesium alloy at high temperatures
    Liu, Wenjun
    Jiang, Bin
    Luo, Suqin
    Chen, Siqiang
    Pan, Fusheng
    JOURNAL OF MATERIALS SCIENCE, 2018, 53 (11) : 8536 - 8544
  • [38] Hot Cracking in AZ31 and AZ61 Magnesium Alloy
    Huang, C. J.
    Cheng, C. M.
    Chou, C. P.
    Chen, F. H.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2011, 27 (07) : 633 - 640
  • [39] Hot Cracking in AZ31 and AZ61 Magnesium Alloy
    C.J. Huang1)
    Journal of Materials Science & Technology, 2011, 27 (07) : 633 - 640
  • [40] Effect of processing temperature on microstructure of AZ61 magnesium alloy produced by compressive torsion processing
    Tsutsui, Kazuteru
    Kume, Yuji
    Kobashi, Makoto
    Kanetake, Naoyuki
    Keikinzoku/Journal of Japan Institute of Light Metals, 2009, 59 (01): : 35 - 40