On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems

被引:8
|
作者
Jacob, Birgit [1 ]
Kaiser, Julia T. [1 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, D-42119 Wuppertal, Germany
来源
IEEE CONTROL SYSTEMS LETTERS | 2019年 / 3卷 / 03期
关键词
Distributed parameter systems; control of networks; linear systems;
D O I
10.1109/LCSYS.2019.2916814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Infinite-dimensional linear port-Hamiltonian systems on a 1-D spatial domain with full boundary control and without internal damping are studied. This class of systems includes models of beams and waves as well as the transport equation and networks of nonhomogeneous transmission lines. The main result shows that well-posed port-Hamiltonian systems, with state space L-2((0,1); C-n) and input space C-n, are exactly controllable.
引用
收藏
页码:661 / 666
页数:6
相关论文
共 50 条
  • [41] Finite Controllability of Infinite-Dimensional Quantum Systems
    Bloch, Anthony M.
    Brockett, Roger W.
    Rangan, Chitra
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (08) : 1797 - 1805
  • [42] CONTROLLABILITY OF INFINITE-DIMENSIONAL DYNAMIC-SYSTEMS
    KLAMKA, J
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 180 : 354 - 363
  • [43] Boundary controllability for disturbed distributed-parameter port-Hamiltonian systems
    Nishida, C
    Yamakita, M
    SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 2389 - 2394
  • [44] Canonical interconnection of discrete linear port-Hamiltonian systems
    Aoues, Said
    Eberard, Damien
    Marquis-Favre, Wilfrid
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 3166 - 3171
  • [45] Controllability of the Fractional Discrete Linear Time-varying Infinite-dimensional Systems
    Klamka, Jerzy
    Niezabitowski, Michal
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [46] CONDENSED FORMS FOR LINEAR PORT-HAMILTONIAN DESCRIPTOR SYSTEMS
    Scholz, Lena
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 65 - 89
  • [47] Output consensus control for linear port-Hamiltonian systems
    Feng, Shuai
    Kawano, Yu
    Cucuzzella, Michele
    Scherpen, Jacquelien M. A.
    IFAC PAPERSONLINE, 2022, 55 (30): : 230 - 235
  • [48] Operator splitting for coupled linear port-Hamiltonian systems
    Lorenz, Jan
    Zwerschke, Tom
    Guenther, Michael
    Schaefers, Kevin
    APPLIED MATHEMATICS LETTERS, 2025, 160
  • [49] Dissipation effects in infinite-dimensional Hamiltonian systems
    S. M. Saulin
    Theoretical and Mathematical Physics, 2017, 191 : 537 - 557
  • [50] Dissipation effects in infinite-dimensional Hamiltonian systems
    Saulin, S. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 191 (01) : 537 - 557