On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems

被引:8
|
作者
Jacob, Birgit [1 ]
Kaiser, Julia T. [1 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, D-42119 Wuppertal, Germany
来源
IEEE CONTROL SYSTEMS LETTERS | 2019年 / 3卷 / 03期
关键词
Distributed parameter systems; control of networks; linear systems;
D O I
10.1109/LCSYS.2019.2916814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Infinite-dimensional linear port-Hamiltonian systems on a 1-D spatial domain with full boundary control and without internal damping are studied. This class of systems includes models of beams and waves as well as the transport equation and networks of nonhomogeneous transmission lines. The main result shows that well-posed port-Hamiltonian systems, with state space L-2((0,1); C-n) and input space C-n, are exactly controllable.
引用
收藏
页码:661 / 666
页数:6
相关论文
共 50 条
  • [21] Controllability of infinite-dimensional conformable linear and semilinear systems
    Toufik Ennouari
    Bouchra Abouzaid
    Mohammed Elarbi Achhab
    International Journal of Dynamics and Control, 2023, 11 : 1265 - 1275
  • [22] Controllability of infinite-dimensional conformable linear and semilinear systems
    Ennouari, Toufik
    Abouzaid, Bouchra
    Achhab, Mohammed Elarbi
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2023, 11 (03) : 1265 - 1275
  • [23] On the Control by Interconnection and Exponential Stabilisation of Infinite Dimensional Port-Hamiltonian Systems
    Macchelli, Alessandro
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3137 - 3142
  • [24] Energy-based Control and Observer Design for higher-order infinite-dimensional Port-Hamiltonian Systems
    Malzer, Tobias
    Ecker, Lukas
    Schoeberl, Markus
    IFAC PAPERSONLINE, 2021, 54 (19): : 44 - 51
  • [25] Linear port-Hamiltonian descriptor systems
    Beattie, Christopher
    Mehrmann, Volker
    Xu, Hongguo
    Zwart, Hans
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2018, 30 (04)
  • [26] Linear port-Hamiltonian descriptor systems
    Christopher Beattie
    Volker Mehrmann
    Hongguo Xu
    Hans Zwart
    Mathematics of Control, Signals, and Systems, 2018, 30
  • [27] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [28] Learnability of Linear Port-Hamiltonian Systems
    Ortega, Juan-Pablo
    Yin, Daiying
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 56
  • [29] CONSTRAINED STOCHASTIC CONTROLLABILITY OF INFINITE-DIMENSIONAL LINEAR-SYSTEMS
    CHAN, WL
    LAU, CK
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 85 (01) : 46 - 78
  • [30] Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control
    Ramirez, Hector
    Zwart, Hans
    Le Gorrec, Yann
    AUTOMATICA, 2017, 85 : 61 - 69