On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems

被引:8
|
作者
Jacob, Birgit [1 ]
Kaiser, Julia T. [1 ]
机构
[1] Univ Wuppertal, Sch Math & Nat Sci, D-42119 Wuppertal, Germany
来源
IEEE CONTROL SYSTEMS LETTERS | 2019年 / 3卷 / 03期
关键词
Distributed parameter systems; control of networks; linear systems;
D O I
10.1109/LCSYS.2019.2916814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Infinite-dimensional linear port-Hamiltonian systems on a 1-D spatial domain with full boundary control and without internal damping are studied. This class of systems includes models of beams and waves as well as the transport equation and networks of nonhomogeneous transmission lines. The main result shows that well-posed port-Hamiltonian systems, with state space L-2((0,1); C-n) and input space C-n, are exactly controllable.
引用
收藏
页码:661 / 666
页数:6
相关论文
共 50 条
  • [1] Representing the dissipation of infinite-dimensional linear port-Hamiltonian systems
    Philipp, Friedrich M.
    IFAC PAPERSONLINE, 2024, 58 (06): : 304 - 308
  • [2] STABILITY AND STABILIZATION OF INFINITE-DIMENSIONAL LINEAR PORT-HAMILTONIAN SYSTEMS
    Augner, Bjoern
    Jacob, Birgit
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2014, 3 (02): : 207 - 229
  • [3] Minimizing the energy supply of infinite-dimensional linear port-Hamiltonian systems
    Philipp, Friedrich
    Schaller, Manuel
    Faulwasser, Timm
    Maschke, Bernhard
    Worthmann, Karl
    IFAC PAPERSONLINE, 2021, 54 (19): : 155 - 160
  • [4] Robust Regulation of Infinite-Dimensional Port-Hamiltonian Systems
    Humaloja, Jukka-Pekka
    Paunonen, Lassi
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (05) : 1480 - 1486
  • [5] Infinite-dimensional port-Hamiltonian systems with a stationary interface
    Kilian, Alexander
    Maschke, Bernhard
    Mironchenko, Andrii
    Wirth, Fabian
    EUROPEAN JOURNAL OF CONTROL, 2025, 82
  • [6] Solvability of time-varying infinite-dimensional linear port-Hamiltonian systems
    Kurula, Mikael
    arXiv, 2022,
  • [7] Solvability of Time-Varying Infinite-Dimensional Linear Port-Hamiltonian Systems
    Kurula, Mikael
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (07) : 4813 - 4819
  • [8] On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems
    Schoeberl, Markus
    Siuka, Andreas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (07) : 1823 - 1828
  • [9] On Dirac structure of infinite-dimensional stochastic port-Hamiltonian systems
    Lamoline, Francois
    Hastir, Anthony
    EUROPEAN JOURNAL OF CONTROL, 2024, 75
  • [10] Approximate and Exact Controllability of Switched Infinite-Dimensional Linear Systems
    Guan, Yacun
    Yang, Hao
    Jiang, Bin
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (10) : 5304 - 5317