Parameter Estimation for Visual Tracking of a Spherical Pendulum with Particle Filter

被引:0
|
作者
Myhre, Torstein A. [1 ]
Egeland, Olav [1 ]
机构
[1] NTNU, Dept Prod & Qual Engn, NO-7465 Trondheim, Norway
关键词
DYNAMICS; MOTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a particle filter for visual tracking using a physical model of the object to be tracked. Moreover, a parameter estimation scheme is implemented to identify the physical parameters of the dynamic model. This is based on recently developed methods for online estimation of static parameters using stochastic gradient search methods. The use of a dynamic model to compute the particle filter prior gives improved tracking accuracy and reduces the required noise level in the model. This makes it possible to predict the motion of the object for use in robotic applications. The performance of the method is validated in experiments with visual tracking of a free swinging pendulum of the type used in robotic loading of objects for automatic paint lines.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 50 条
  • [41] State estimation using the particle filter with mode tracking
    Pocock, J. A.
    Dance, S. L.
    Lawless, A. S.
    COMPUTERS & FLUIDS, 2011, 46 (01) : 392 - 397
  • [42] A Distributed Particle Filter for Bearings-Only Tracking on Spherical Surfaces
    Yu, Jun Ye
    Coates, Mark J.
    Rabbat, Michael G.
    Blouin, Stephane
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (03) : 326 - 330
  • [43] Convolutional Neural Network with Particle Filter Approach for Visual Tracking
    Tyan, Vladimir
    Kim, Doohyun
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (02): : 693 - 709
  • [44] Visual tracking by threshold and scale-based particle filter
    Yin, Hui
    Cao, Yongfeng
    Sun, Hong
    Yang, Wen
    MIPPR 2007: AUTOMATIC TARGET RECOGNITION AND IMAGE ANALYSIS; AND MULTISPECTRAL IMAGE ACQUISITION, PTS 1 AND 2, 2007, 6786
  • [45] Visual Tracking Using an Insect Vision Embedded Particle Filter
    Guo, Wei
    Zhao, Qingjie
    Gu, Dongbing
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [46] Adaptive Dynamic Model Particle Filter for Visual Object Tracking
    Zhang, JiXiang
    Tian, Yuan
    Yang, YiPing
    2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL I, 2009, : 333 - 336
  • [47] Kernel particle filter: Iterative sampling for efficient visual tracking
    Chang, C
    Ansari, R
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 977 - 980
  • [48] A Geometric Particle Filter for Template-Based Visual Tracking
    Kwon, Junghyun
    Lee, Hee Seok
    Park, Frank C.
    Lee, Kyoung Mu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) : 625 - 643
  • [49] Remarkable local resampling based on particle filter for visual tracking
    Zhao, Zhiqiang
    Wang, Tianjiang
    Liu, Fang
    Choe, Gwangmin
    Yuan, Caihong
    Cui, Zongmin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (01) : 835 - 860
  • [50] Adaptive Ball Particle Filter and its Application to Visual Tracking
    Xia, Yu
    Wu, Xiao-jun
    IETE TECHNICAL REVIEW, 2015, 32 (06) : 462 - 470