Parameter Estimation for Visual Tracking of a Spherical Pendulum with Particle Filter

被引:0
|
作者
Myhre, Torstein A. [1 ]
Egeland, Olav [1 ]
机构
[1] NTNU, Dept Prod & Qual Engn, NO-7465 Trondheim, Norway
关键词
DYNAMICS; MOTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a particle filter for visual tracking using a physical model of the object to be tracked. Moreover, a parameter estimation scheme is implemented to identify the physical parameters of the dynamic model. This is based on recently developed methods for online estimation of static parameters using stochastic gradient search methods. The use of a dynamic model to compute the particle filter prior gives improved tracking accuracy and reduces the required noise level in the model. This makes it possible to predict the motion of the object for use in robotic applications. The performance of the method is validated in experiments with visual tracking of a free swinging pendulum of the type used in robotic loading of objects for automatic paint lines.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 50 条
  • [21] Trajectory Tracking, Estimation, and Control of a Pendulum-Driven Spherical Robot
    Hogan, Francois Robert
    Forbes, James Richard
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (05) : 1118 - +
  • [22] Parameter estimation of rotary inverted pendulum based on unscented kalman filter
    Zheng, Min
    Ikeda, Kenji
    Shimomura, Takao
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 3157 - +
  • [23] Insect Vision Inspired Particle Filter for Visual Tracking
    Guo, Wei
    Zhao, Qingjie
    Wang, Bo
    Yu, Guanqun
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 2661 - 2666
  • [24] A Bat-inspired Particle Filter for Visual Tracking
    Gao, Ming-Liang
    Zang, Yuan-Ru
    Zhao, Shu-Zhi
    Li, Zhao
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 3810 - 3815
  • [25] An Improved Visual Tracking Algorithm Based on Particle Filter
    Li, Mo
    Fan, Zheyi
    Liu, Zhiwen
    2013 IEEE INTERNATIONAL CONFERENCE OF IEEE REGION 10 (TENCON), 2013,
  • [26] Iterated unscented Kalman particle filter for visual tracking
    Sun, Wei
    Li, Xucheng
    Qiu, Jianhua
    Wang, Fasheng
    Journal of Computational Information Systems, 2014, 10 (02): : 681 - 689
  • [27] Visual Tracking with Double-layer Particle Filter
    Qi Yujuan
    Wang Yangjiang
    PROCEEDINGS OF 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) VOLS 1-3, 2012, : 1127 - 1130
  • [28] Visual tracking based on particle filter with spline resampling
    Gwangmin Choe
    Tianjiang Wang
    Fang Liu
    Chunhwa Choe
    Hyoson So
    Multimedia Tools and Applications, 2015, 74 : 7195 - 7220
  • [29] Visual Tracking Based on Compressive Sensing and Particle Filter
    Huang, Wenhui
    Gu, Jason
    Ma, Xin
    2015 IEEE 28TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2015, : 1435 - 1440
  • [30] Visual tracking based on particle filter with spline resampling
    Choe, Gwangmin
    Wang, Tianjiang
    Liu, Fang
    Choe, Chunhwa
    So, Hyoson
    MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (17) : 7195 - 7220