Monitoring variability and analyzing multivariate autocorrelated processes

被引:16
|
作者
Jarrett, Jeffrey E. [1 ]
Pan, Xia
机构
[1] Univ Rhode Isl, Kingston, RI 02881 USA
[2] Macau Univ Sci & Technol, Macau, Peoples R China
关键词
SPC; variability shift; quality control for multivariate and serially correlated processes; vector autoregressive (VAR) residuals; diagnosing types of parameter shift;
D O I
10.1080/02664760701231849
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Traditional multivariate quality control charts are based on independent observations. In this paper, we explain how to extend univariate residual charts to multivariate cases and how to combine the traditional statistical process control (SPC) approaches to monitor changes in process variability in a dynamic environment. We propose using Alt's ( 1984) W chart on vector autoregressive (VAR) residuals to monitor the variability for multivariate processes in the presence of autocorrelation. We study examples jointly using the Hotelling T-2 chart on VAR residuals, the W chart, and the Portmanteau test to diagnose the types of shift in process parameters.
引用
收藏
页码:459 / 470
页数:12
相关论文
共 50 条
  • [21] Monitoring multistage processes with autocorrelated observations
    Kim, Jinho
    Jeong, Myong K.
    Elsayed, Elsayed A.
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2017, 55 (08) : 2385 - 2396
  • [22] A Multivariate Control Chart for Autocorrelated Tool Wear Processes
    Harris, Keith
    Triantafyllopoulos, Kostas
    Stillman, Eleanor
    McLeay, Thomas
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (06) : 2093 - 2106
  • [23] One-Class Classification-Based Control Charts for Monitoring Autocorrelated Multivariate Processes
    Kim, Seoung Bum
    Jitpitaklert, Weerawat
    Sukchotrat, Thuntee
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (03) : 461 - 474
  • [24] Using Geostatistics to Estimate the Variability of Autocorrelated Processes
    Mingoti, Sueli Aparecida
    Neves, Otaviano Francisco
    [J]. BRAZILIAN JOURNAL OF OPERATIONS & PRODUCTION MANAGEMENT, 2005, 2 (01): : 39 - 56
  • [25] Shift detection and source identification in multivariate autocorrelated processes
    Hwarng, H. Brian
    Wang, Yu
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2010, 48 (03) : 835 - 859
  • [26] SPC for short-run multivariate autocorrelated processes
    Snoussi, A.
    [J]. JOURNAL OF APPLIED STATISTICS, 2011, 38 (10) : 2303 - 2312
  • [27] An adaptive variable-parameters scheme for the simultaneous monitoring of the mean and variability of an autocorrelated multivariate normal process
    Sabahno, Hamed
    Castagliola, Philippe
    Amiri, Amirhossein
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (08) : 1430 - 1465
  • [28] Control charts for monitoring processes with autocorrelated data
    Reynolds, Jr., Marion R.
    Lu, Chao-Wen
    [J]. Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (07): : 4059 - 4067
  • [29] Online monitoring of autocorrelated multivariate linear profiles via multivariate mixed models
    Khalili, Somayeh
    Noorossana, Rassoul
    [J]. QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2022, 19 (03): : 319 - 340
  • [30] Control charts for monitoring processes with autocorrelated data
    Reynolds, MR
    Lu, CW
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) : 4059 - 4067