The generalization of Faulhaber's formula to sums of non-integral powers

被引:16
|
作者
McGown, Kevin J.
Parks, Harold R. [1 ]
机构
[1] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
sums of non-integral powers; Faulhaber's formula; Bernoulli numbers; Euler-Maclaurin summation; Riemann zeta function;
D O I
10.1016/j.jmaa.2006.08.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A formula for the sum of any positive-integral power of the first N positive integers was published by Johann Faulhaber in the 1600s. In this paper, we generalize Faulhaber's formula to non-integral complex powers with real part greater than -1. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:571 / 575
页数:5
相关论文
共 50 条
  • [31] PROCESSING CONJUNCTIONS OF NON-INTEGRAL DIMENSIONS
    HALASZ, FG
    BIEDERMAN, I
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1981, 18 (02) : 50 - 50
  • [32] Non-integral toroidal Dehn surgeries
    Gordon, CM
    Luecke, J
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2004, 12 (1-2) : 417 - 485
  • [33] Generalization of Kennedy's integral formula using milnor defect
    Barbosa, Grazielle F.
    Grulha Jr, Nivaldo G.
    Pereira, Miriam S.
    Seade, Jose
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 18 (2): : 1154 - 1164
  • [34] Definite/Indefinite Integrals Involving Non-integral Powers for Certain Trigonometric Functions Times Special Functions
    Mochimaru, Yoshihiro
    NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES, NTADES 2023, 2024, 449 : 141 - 150
  • [35] On sums of positive integral k th powers
    Davenport, H
    AMERICAN JOURNAL OF MATHEMATICS, 1942, 64 : 189 - 198
  • [36] Sums of the even integral powers of the cosecant and secant
    Gauthier, N.
    Bruckman, Paul S.
    FIBONACCI QUARTERLY, 2006, 44 (03): : 264 - 273
  • [37] Non-integral toroidal surgery on hyperbolic knots in S3
    Gordon, CM
    Wu, YQ
    Zhang, X
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (06) : 1869 - 1879
  • [38] Generalization and Application of Cauchy Integral Formula
    Cao Xuefeng
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 72 - 76
  • [40] GENERALIZATION OF AN INTEGRAL FORMULA OF GUESSAB AND SCHMEISSER
    Kovac, Sanja
    Pecaric, Josip
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2011, 5 (01): : 1 - 18