GENERALIZATION OF AN INTEGRAL FORMULA OF GUESSAB AND SCHMEISSER

被引:0
|
作者
Kovac, Sanja [1 ]
Pecaric, Josip [2 ]
机构
[1] Univ Zagreb, Fac Geotech Engn, Varazhdin 42000, Croatia
[2] Univ Zagreb, Fac Text Technol, Zagreb 10000, Croatia
来源
关键词
Weight function; w-harmonic sequences of functions; quadrature formula; Gauss formula; Legendre-Gauss; Chebyshev-Gauss; Hermite-Gauss; inequality; sharp constants; best possible constants; two-point quadrature formula;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weighted version of two-point integral quadrature formula is obtained using w-harmonic sequences of functions. Improved version of Guessab and Schmeisser's result is given with new integral inequalities under various regular conditions. As special cases, the generalizations of quadrature formulae of Gauss type are established.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] A generalization of a theorem of Brass and Schmeisser
    Szostok, Tomasz
    NUMERISCHE MATHEMATIK, 2024, 156 (05) : 1915 - 1925
  • [2] Guessab-Schmeisser inequality via Fink identity on time scales with applications
    Hussain, Sabir
    Urooj, Ifrah
    Dragomir, Sever Silvestru
    Latif, Muhammad Amer
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [3] Guessab-Schmeisser inequality via Fink identity on time scales with applications
    Sabir Hussain
    Ifrah Urooj
    Sever Silvestru Dragomir
    Muhammad Amer Latif
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [4] GENERALIZATION OF AN INTEGRAL FORMULA OF BATEMAN
    GOULD, HW
    DUKE MATHEMATICAL JOURNAL, 1962, 29 (03) : 475 - &
  • [5] Generalization and Application of Cauchy Integral Formula
    Cao Xuefeng
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 72 - 76
  • [7] On a generalization of an approximation operator defined by A. Guessab
    Taghavi, Ali
    Roushan, Tahere Azimi
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (12): : 2340 - 2352
  • [8] Generalization of Kennedy's integral formula using milnor defect
    Barbosa, Grazielle F.
    Grulha Jr, Nivaldo G.
    Pereira, Miriam S.
    Seade, Jose
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 18 (2): : 1154 - 1164
  • [9] A generalization of the Poisson integral formula for the functions harmonic and biharmonic in a ball
    Yaremko O.E.
    Siberian Advances in Mathematics, 2014, 24 (3) : 222 - 227
  • [10] A generalization of the classical Cesaro-Volterra path integral formula
    Ciarlet, Philippe G.
    Gratie, Lillana
    Mardare, Cristinel
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (9-10) : 577 - 582