Some fractional Hermite-Hadamard-type integral inequalities with s-(α, m)-convex functions and their applications

被引:0
|
作者
Liu, R. N. [1 ]
Xu, Run [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu, Shandong, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2021年 / 2021卷 / 01期
基金
美国国家科学基金会;
关键词
Hermite-Hadamard inequality; Convex functions; Riemann-Liouville fractional integral; Power-mean inequality; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.1186/s13662-021-03231-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the new concept of s-(alpha, m)-convex functions, we obtain some new Hermite-Hadamard inequalities with an s-(alpha, m)-convex function. We use these inequalities to estimate Riemann-Liouville fractional integrals with second-order differentiable convex functions to enrich the Hermite-Hadamard-type inequalities. We give some applications to special means.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Hermite-Hadamard-Type Integral Inequalities for Convex Functions and Their Applications
    Srivastava, Hari M.
    Mehrez, Sana
    Sitnik, Sergei M.
    MATHEMATICS, 2022, 10 (17)
  • [2] Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function
    Han, Jiangfeng
    Mohammed, Pshtiwan Othman
    Zeng, Huidan
    OPEN MATHEMATICS, 2020, 18 : 794 - 806
  • [3] Several Quantum Hermite-Hadamard-Type Integral Inequalities for Convex Functions
    Ciurdariu, Loredana
    Grecu, Eugenia
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [4] Hermite-Hadamard-Type Inequalities for F-Convex Functions via Katugampola Fractional Integral
    Set, Erhan
    Mumcu, Ilker
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [5] Hermite-Hadamard-Type Integral Inequalities for Functions Whose First Derivatives are Convex
    Qi, F.
    Zhang, T. -Yu
    Xi, B. -Ya.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 67 (04) : 625 - 640
  • [6] Generalized fractional integral inequalities of Hermite-Hadamard type for (,m)-convex functions
    Qi, Feng
    Mohammed, Pshtiwan Othman
    Yao, Jen-Chih
    Yao, Yong-Hong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [7] DISCRETE HERMITE-HADAMARD-TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION
    Qi, Yongfang
    Wen, Qingzhi
    LI, Guoping
    Xiao, Kecheng
    Wang, Shan
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [8] SOME INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR DIFFERENTIABLE (s, m)-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
    Bayraktar, B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (03): : 625 - 637
  • [9] On some Volterra-Fredholm and Hermite-Hadamard-type fractional integral inequalities
    Bounoua, Mohamed Doubbi
    Tang, Jianhua
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [10] New Hermite-Hadamard-type inequalities for convex functions (II)
    Tseng, Kuei-Lin
    Hwang, Shiow-Ru
    Dragomir, Sever S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) : 401 - 418