Some fractional Hermite-Hadamard-type integral inequalities with s-(α, m)-convex functions and their applications

被引:0
|
作者
Liu, R. N. [1 ]
Xu, Run [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu, Shandong, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2021年 / 2021卷 / 01期
基金
美国国家科学基金会;
关键词
Hermite-Hadamard inequality; Convex functions; Riemann-Liouville fractional integral; Power-mean inequality; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.1186/s13662-021-03231-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under the new concept of s-(alpha, m)-convex functions, we obtain some new Hermite-Hadamard inequalities with an s-(alpha, m)-convex function. We use these inequalities to estimate Riemann-Liouville fractional integrals with second-order differentiable convex functions to enrich the Hermite-Hadamard-type inequalities. We give some applications to special means.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s, m)-convex functions
    Xi, Bo-Yan
    Gao, Dan-Dan
    Qi, Feng
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 483 - 498
  • [12] Integral inequalities of Hermite-Hadamard type for (α, s)-convex and (α, s,m)-convex functions
    Xi, Bo-Yan
    Gao, Dan-Dan
    Qi, Feng
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 499 - 510
  • [13] New Hermite-Hadamard-type inequalities for convex functions (I)
    Tseng, Kuei-Lin
    Hwang, Shiow-Ru
    Dragomir, Sever S.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (06) : 1005 - 1009
  • [14] Hermite-Hadamard-type inequalities for functions whose derivatives are -convex via fractional integrals
    Kwun, Young Chel
    Saleem, Muhammad Shoaib
    Ghafoor, Mamoona
    Nazeer, Waqas
    Kang, Shin Min
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [15] Hermite-Hadamard-Type Inequalities for Generalized Convex Functions via the Caputo-Fabrizio Fractional Integral Operator
    Zhang, Dong
    Saleem, Muhammad Shoaib
    Botmart, Thongchai
    Zahoor, M. S.
    Bano, R.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [16] Hermite-Hadamard-Type Inequalities for Product of Functions by Using Convex Functions
    Nawaz, Tariq
    Memon, M. Asif
    Jacob, Kavikumar
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [17] Several integral inequalities of the Hermite-Hadamard type for s-(?, F)-convex functions
    Wang, Yan
    Liu, Xi -Min
    Guo, Bai-Ni
    SCIENCEASIA, 2023, 49 (02): : 200 - 204
  • [18] Hermite-Hadamard-Type Inequalities for Convex Functions via the Fractional Integrals with Exponential Kernel
    Wu, Xia
    Wang, JinRong
    Zhang, Jialu
    MATHEMATICS, 2019, 7 (09)
  • [19] Some Integral Inequalities of Hermite-Hadamard Type for Convex Functions with Applications to Means
    Xi, Bo-Yan
    Qi, Feng
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [20] Hermite-Hadamard-type inequalities for strongly (α, m)-convex functions via quantum calculus
    Mishra, Shashi Kant
    Sharma, Ravina
    Bisht, Jaya
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (05) : 4971 - 4994