Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function

被引:63
|
作者
Han, Jiangfeng [3 ]
Mohammed, Pshtiwan Othman [1 ,2 ]
Zeng, Huidan [3 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[2] East China Univ Sci & Technol, Sch Mat Sci & Engn, Key Lab Ultrafine Mat, Minist Educ, Shanghai 200237, Peoples R China
[3] Guangxi Univ Finance & Econ, Dept Informat & Stat, Nanning 530003, Guangxi, Peoples R China
来源
OPEN MATHEMATICS | 2020年 / 18卷
关键词
Riemann-Liouville fractional integral; MT-convex function; integral inequalities;
D O I
10.1515/math-2020-0038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT-convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature.
引用
收藏
页码:794 / 806
页数:13
相关论文
共 50 条
  • [1] Hermite-Hadamard-Type Integral Inequalities for Convex Functions and Their Applications
    Srivastava, Hari M.
    Mehrez, Sana
    Sitnik, Sergei M.
    [J]. MATHEMATICS, 2022, 10 (17)
  • [2] Hermite-Hadamard-Type Inequalities for Generalized Convex Functions via the Caputo-Fabrizio Fractional Integral Operator
    Zhang, Dong
    Saleem, Muhammad Shoaib
    Botmart, Thongchai
    Zahoor, M. S.
    Bano, R.
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [3] Study on Hermite-Hadamard-type inequalities using a new generalized fractional integral operator
    Ni, Jinbo
    Chen, Gang
    Dong, Hudie
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [4] Study on Hermite-Hadamard-type inequalities using a new generalized fractional integral operator
    Jinbo Ni
    Gang Chen
    Hudie Dong
    [J]. Journal of Inequalities and Applications, 2023
  • [5] Generalized fractional integral inequalities of Hermite–Hadamard type for harmonically convex functions
    Dafang Zhao
    Muhammad Aamir Ali
    Artion Kashuri
    Hüseyin Budak
    [J]. Advances in Difference Equations, 2020
  • [6] Hermite-Hadamard-Type Inequalities for F-Convex Functions via Katugampola Fractional Integral
    Set, Erhan
    Mumcu, Ilker
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [7] Several Quantum Hermite-Hadamard-Type Integral Inequalities for Convex Functions
    Ciurdariu, Loredana
    Grecu, Eugenia
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [8] Hermite-Hadamard-type inequalities for generalized 3-convex functions
    Bessenyei, M
    [J]. PUBLICATIONES MATHEMATICAE DEBRECEN, 2004, 65 (1-2): : 223 - 232
  • [9] Hermite-Hadamard-Type Inequalities Involving Harmonically Convex Function via the Atangana-Baleanu Fractional Integral Operator
    Latif, Muhammad Amer
    Kalsoom, Humaira
    Abidin, Muhammad Zainul
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [10] On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals
    Sarikaya, Mehmet Zeki
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (02) : 134 - 147