Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function

被引:63
|
作者
Han, Jiangfeng [3 ]
Mohammed, Pshtiwan Othman [1 ,2 ]
Zeng, Huidan [3 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[2] East China Univ Sci & Technol, Sch Mat Sci & Engn, Key Lab Ultrafine Mat, Minist Educ, Shanghai 200237, Peoples R China
[3] Guangxi Univ Finance & Econ, Dept Informat & Stat, Nanning 530003, Guangxi, Peoples R China
来源
OPEN MATHEMATICS | 2020年 / 18卷
关键词
Riemann-Liouville fractional integral; MT-convex function; integral inequalities;
D O I
10.1515/math-2020-0038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT-convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature.
引用
收藏
页码:794 / 806
页数:13
相关论文
共 50 条
  • [21] Hermite-Hadamard-type inequalities for generalized trigonometrically and hyperbolic ρ-convex functions in two dimension
    Dragomir, Silvestru Sever
    Jleli, Mohamed
    Samet, Bessem
    [J]. OPEN MATHEMATICS, 2024, 22 (01):
  • [22] Hermite-Hadamard-Type Inequalities for Convex Functions via the Fractional Integrals with Exponential Kernel
    Wu, Xia
    Wang, JinRong
    Zhang, Jialu
    [J]. MATHEMATICS, 2019, 7 (09)
  • [23] New Hermite-Hadamard-type inequalities for convex functions (I)
    Tseng, Kuei-Lin
    Hwang, Shiow-Ru
    Dragomir, Sever S.
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (06) : 1005 - 1009
  • [24] HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS
    Aslani, S. Mohammadi
    Delavar, M. Rostamian
    Vaezpour, S. M.
    [J]. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (01): : 17 - 33
  • [25] Generalized Hermite-Hadamard-Type Integral Inequalities for h-Godunova-Levin Functions
    Ali, Rana Safdar
    Mubeen, Shahid
    Ali, Sabila
    Rahman, Gauhar
    Younis, Jihad
    Ali, Asad
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [26] Fractional Integral Inequalities of Hermite-Hadamard Type for Convex Functions With Respect to a Monotone Function
    Mohammed, Pshtiwan Othman
    [J]. FILOMAT, 2020, 34 (07) : 2401 - 2411
  • [27] New Hermite-Hadamard-type inequalities for fractional integrals and their applications
    Hwang, Shiow-Ru
    Tseng, Kuei-Lin
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1211 - 1223
  • [28] Hermite-Hadamard-Type Inequalities for h-Convex Functions Involving New Fractional Integral Operators with Exponential Kernel
    Wu, Yaoqun
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [29] Exploration of Hermite-Hadamard-Type Integral Inequalities for Twice Differentiable h-Convex Functions
    Vivas-Cortez, Miguel
    Samraiz, Muhammad
    Ghaffar, Muhammad Tanveer
    Naheed, Saima
    Rahman, Gauhar
    Elmasry, Yasser
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (07)
  • [30] HERMITE-HADAMARD-TYPE INEQUALITIES INVOLVING SEVERAL KINDS OF FRACTIONAL CALCULUS FOR HARMONICALLY CONVEX FUNCTIONS
    Sun, Wenbing
    Wan, Haiyang
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)