Study on Hermite-Hadamard-type inequalities using a new generalized fractional integral operator

被引:0
|
作者
Jinbo Ni
Gang Chen
Hudie Dong
机构
[1] Anhui University of Science and Technology,School of Mathematics and Big Data
关键词
Fractional integral operator; Hermite-Hadamard-type inequality; Convex function; 26A09; 26A33; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, a new definition of the fractional integral operator is first proposed, which generalizes some well-known fractional integral operators. Then, by using this newly generalized fractional integral operator, we proved several new Hermite-Hadamard-type inequalities for convex functions. Finally, we provided some corollaries to show that the current results extend and enrich the previous results in the literature.
引用
收藏
相关论文
共 50 条
  • [1] Study on Hermite-Hadamard-type inequalities using a new generalized fractional integral operator
    Ni, Jinbo
    Chen, Gang
    Dong, Hudie
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [2] Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function
    Han, Jiangfeng
    Mohammed, Pshtiwan Othman
    Zeng, Huidan
    [J]. OPEN MATHEMATICS, 2020, 18 : 794 - 806
  • [3] Hermite-Hadamard-Type Inequalities for Generalized Convex Functions via the Caputo-Fabrizio Fractional Integral Operator
    Zhang, Dong
    Saleem, Muhammad Shoaib
    Botmart, Thongchai
    Zahoor, M. S.
    Bano, R.
    [J]. JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [4] New Hermite-Hadamard-type inequalities for fractional integrals and their applications
    Hwang, Shiow-Ru
    Tseng, Kuei-Lin
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1211 - 1223
  • [5] ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR
    Yaldiz, H.
    Sarikaya, M. Z.
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (03): : 369 - 378
  • [6] A study on Hermite-Hadamard-type inequalities via new fractional conformable integrals
    Set, Erhan
    Gozpinar, Abdurrahman
    Butt, Saad Ihsan
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (02)
  • [7] Generalized Hermite - Hadamard Type Integral Inequalities for Fractional Integrals
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    [J]. FILOMAT, 2016, 30 (05) : 1315 - 1326
  • [8] On some Volterra-Fredholm and Hermite-Hadamard-type fractional integral inequalities
    Bounoua, Mohamed Doubbi
    Tang, Jianhua
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [9] Refinements and Applications of Hermite-Hadamard-Type Inequalities Using Hadamard Fractional Integral Operators and GA-Convexity
    Amer Latif, Muhammad
    [J]. MATHEMATICS, 2024, 12 (03)
  • [10] New Hermite-Hadamard-Type Inequalities and Their Applications
    Tseng, Kuei-Lin
    Hwang, Shiow-Ru
    [J]. FILOMAT, 2016, 30 (14) : 3667 - 3680