Neutron dose estimation;
Ambient dose equivalent;
Effective dose;
Prompt gamma;
Monte Carlo simulations;
POLYETHYLENE;
D O I:
10.1016/j.nima.2021.165072
中图分类号:
TH7 [仪器、仪表];
学科分类号:
0804 ;
080401 ;
081102 ;
摘要:
Estimations of the ambient dose equivalent H*(10) and the effective dose (anterior-posterior) E-AP from prompt gamma intensities are investigated theoretically using Monte Carlo simulations. The system considered consists of a NaI(Tl) gamma detector to measure prompt gamma intensities emitted due to neutron irradiation from a high density polyethylene (HDPE) cylinder embedded in a hollow borated-HDPE cylinder and covered by a layer of lead. A comparative evaluation of different computational techniques of dose estimation, such as, the multiple linear regression method, the detector response-matrix inversion method and the convolution of the unfolded neutron energy distributions with the fluence to dose conversion coefficients (DCC) provided by the International Commission on Radiological Protection (ICRP) is done. The dose estimations are done using the prompt gamma responses (response matrix) obtained for the five distinct gamma peak intensities (boron, hydrogen, carbon and 2 from lead) emitted from the system for incident mono-energetic neutrons ranging from 0.01 eV to 1 GeV. Different workplace neutron spectra are used for the estimation of ambient dose and effective dose to evaluate performances of these three dose estimation methods. The doses (H* (10) and E-AP) estimated using the convolution of the unfolded neutron spectra with the DCC-ICRP result in satisfactory and accurate agreement with the actual dose, followed by the estimated dose obtained from the regression analysis.