Non-rigid Registration of White Matter Tractography Using Coherent Point Drift Algorithm

被引:1
|
作者
Wang, Wenjuan [1 ,2 ]
Liu, Jin [1 ,3 ]
Wang, Tengfei [3 ,4 ]
Hu, Zongtao [3 ,4 ]
Xia, Li [3 ,4 ]
Wang, Hongzhi [3 ,4 ]
Yang, Lizhuang [3 ,4 ]
Wong, Stephen T. C. [5 ]
Zhang, Xiaochu [1 ]
Li, Hai [3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei 230027, Peoples R China
[2] Anhui Agr Univ, Sch Sci, Hefei 230036, Peoples R China
[3] Chinese Acad Sci, Hefei Inst Phys Sci, Ctr Med Phys & Technol, Anhui Prov Key Lab Med Phys & Technol, Hefei 230031, Peoples R China
[4] Chinese Acad Sci, Canc Hosp, Hefei 230031, Peoples R China
[5] Weill Cornell Med, Houston Methodist Canc Ctr, Dept Syst Med & Bioengn, Houston, TX 77030 USA
基金
国家重点研发计划;
关键词
DTI; Tract-based analysis; Registration; CPD; TRACT-BASED ANALYSIS; TENSOR; IMAGES;
D O I
10.1007/978-3-030-33226-6_1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Axonal fibers in the white matter are in charge of bio-signal delivery and relate information between neurons within the nervous system and between neurons and peripheral target tissues. Tract-based analysis (TBA) can directly bridge white matter and its connected cerebral cortex to achieve a joint analysis of the brain's structure and function. However, the accuracy of TBA is highly dependent on the quality of spatial registration of fiber bundles of different individuals to the standard space. In this paper, a non-rigid point registration, Coherent Point Drift (CPD), is applied for registration of fiber bundles. Both the fiber features and the registration accuracy are evaluated to determine the correspondence among fiber bundles. Experiment results on twelve real data showed higher registration accuracy of the proposed method on mean nearest neighbor distance and fractional anisotropy (FA) profiles than traditional registration methods, such as affine, elastic and Iterative Closest Point (ICP).
引用
收藏
页码:3 / 11
页数:9
相关论文
共 50 条
  • [31] Non-rigid registration of point clouds using landmarks and stochastic neighbor embedding
    Maharjan, Amar
    Yuan, Xiaohui
    Lu, Qiang
    Fan, Yuqi
    Chen, Tian
    [J]. JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (03)
  • [32] Optimized imaging using non-rigid registration
    Berkels, Benjamin
    Binev, Peter
    Blom, Douglas A.
    Dahmen, Wolfgang
    Sharpley, Robert C.
    Vogt, Thomas
    [J]. ULTRAMICROSCOPY, 2014, 138 : 46 - 56
  • [33] Robust Non-rigid Registration Algorithm Based on Local Affine Registration
    Xiong Lei
    Wu Liyang
    Du Shaoyi
    Bi Duyan
    Fang Ting
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (04) : 920 - 927
  • [34] Robust Non-rigid Registration Algorithm Based on Local Affine Registration
    Wu, Liyang
    Xiong, Lei
    Due, Shaoyi
    Bi, Duyan
    Fang, Ting
    Liu, Kun
    Wu, Dongpeng
    [J]. NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [35] A new algorithm for non-rigid point matching
    Chui, HL
    Rangarajan, A
    [J]. IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, VOL II, 2000, : 44 - 51
  • [36] NON-RIGID MULTIPLE POINT SET REGISTRATION USING LATENT GAUSSIAN MIXTURE
    Huang, Hao
    Chen, Cheng
    Fang, Yi
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3181 - 3185
  • [37] Non-rigid registration using distance functions
    Paragios, N
    Rousson, M
    Ramesh, V
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2003, 89 (2-3) : 142 - 165
  • [39] A refined coherent point drift (CPD) algorithm for point set registration
    Peng Wang
    Ping Wang
    ZhiGuo Qu
    YingHui Gao
    ZhenKang Shen
    [J]. Science China Information Sciences, 2011, 54 : 2639 - 2646
  • [40] A refined coherent point drift (CPD) algorithm for point set registration
    Wang Peng
    Wang Ping
    Qu ZhiGuo
    Gao YingHui
    Shen ZhenKang
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2011, 54 (12) : 2639 - 2646