A refined coherent point drift(CPD)algorithm for point set registration

被引:1
|
作者
WANG Peng
机构
关键词
point set registration; Gaussian mixture model (GMM); coherent point drift (CPD); genetic algorithm (GA); simplex;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The coherent point drift (CPD) algorithm is a powerful approach for point set registration. However, it suffers from a serious problem-there is a weight parameter w that reflects the assumption about the amount of noise and number of outliers in the Gaussian mixture model, and its value has an influence on the point set registration performance In the original CPD algorithm, the value of w is set manually, and hence an improper value will lead to poor registration results. To solve this problem, a fully automatic algorithm for the selection of an optimal weight parameter is proposed using a hybrid optimization scheme that combines the genetic algorithm with the Nelder-Mead simplex method. The experiments show that the refined CPD algorithm is more effective and extends the original CPD algorithm in its methodology and applications.
引用
收藏
页码:2659 / 2666
页数:8
相关论文
共 50 条
  • [1] A refined coherent point drift (CPD) algorithm for point set registration
    Peng Wang
    Ping Wang
    ZhiGuo Qu
    YingHui Gao
    ZhenKang Shen
    [J]. Science China Information Sciences, 2011, 54 : 2639 - 2646
  • [2] A refined coherent point drift (CPD) algorithm for point set registration
    Wang Peng
    Wang Ping
    Qu ZhiGuo
    Gao YingHui
    Shen ZhenKang
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2011, 54 (12) : 2639 - 2646
  • [3] Point Set Registration: Coherent Point Drift
    Myronenko, Andriy
    Song, Xubo
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (12) : 2262 - 2275
  • [4] Division-based large point set registration using coherent point drift (CPD) with automatic parameter tuning
    Chen, Junfen
    Liao, Iman Yi
    Belaton, Bahari
    Zaman, Munir
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (05) : 2297 - 2308
  • [5] Anisotropic Generalized Bayesian Coherent Point Drift for Point Set Registration
    Zhang, Ang
    Min, Zhe
    Zhang, Zhengyan
    Yang, Xing
    Meng, Max Q-H
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2023, 20 (01) : 495 - 505
  • [6] Infrared and visual image point set registration based on sensor parameters and refined CPD algorithm
    Wang Peng
    Gao Ying-Hui
    Wang Ping
    Qu Zhi-Guo
    Shen Zhen-Kang
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2012, 31 (02) : 171 - 176
  • [7] LSG-CPD: Coherent Point Drift with Local Surface Geometry for Point Cloud Registration
    Liu, Weixiao
    Wu, Hongtao
    Chirikjian, Gregory S.
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15273 - 15282
  • [8] Robust and Accurate Point Set Registration with Generalized Bayesian Coherent Point Drift
    Zhang, Ang
    Min, Zhe
    Pan, Jin
    Meng, Max Q-H
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 516 - 523
  • [9] Hippocampus Localization Guided by Coherent Point Drift Registration Using Assembled Point Set
    Achuthan, Anusha
    Rajeswari, Mandava
    Jalaluddin, Win Mar Salmah
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2013, 8073 : 92 - 102
  • [10] Robust Non-Rigid Point Set Registration Algorithm Considering Anisotropic Uncertainties Based on Coherent Point Drift
    Min, Zhe
    Pan, Jin
    Zhang, Ang
    Meng, Max Q. -H.
    [J]. 2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 7903 - 7910