Strongly Nonlocal Dislocation Dynamics in Crystals

被引:37
|
作者
Dipierro, Serena [1 ,2 ]
Figalli, Alessio [3 ]
Valdinoci, Enrico [4 ]
机构
[1] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[4] Weierstrass Inst Angew Anal & Stochast, Berlin, Germany
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Dislocation dynamics; Fractional Laplacian; Nonlocal Peierls-Nabarro model; Oscillation and regularity results; PARTICLE-SYSTEMS; HOMOGENIZATION; EQUATION;
D O I
10.1080/03605302.2014.914536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the equation v(t) = L(s)v - W'(v) + sigma(epsilon)(t,x) in (o,+infinity) x IR, where L-s is an integro-differential operator of order 2s, with s is an element of(0,1), W is a periodic potential, and sigma(epsilon) is a small external stress. The solution v represents the atomic dislocation in the Peierls-Nabarro model for crystals, and we specifically consider the case s is an element of(0,1/2), which takes into account a strongly nonlocal elastic term. We study the evolution of such dislocation function for macroscopic space and time scales, namely we introduce the function v(epsilon)(t,x) := v (t/epsilon(1+2s), x/epsilon). We show that, for small epsilon, the function v(epsilon) approaches the sum of step functions. From the physical point of view, this shows that the dislocations have the tendency to concentrate at single points of the crystal, where the size of the slip coincides with the natural periodicity of the medium. We also show that the motion of these dislocation points is governed by an interior repulsive potential that is superposed to an elastic reaction to the external stress.
引用
下载
收藏
页码:2351 / 2387
页数:37
相关论文
共 50 条
  • [31] DYNAMICS OF A SCREW DISLOCATION IN SMECTIC A LIQUID-CRYSTALS
    PLEINER, H
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1986, 54 (03): : 421 - 439
  • [32] Dislocation-precipitate interactions in crystals: from the BKS model to collective dislocation dynamics
    Lasse Laurson
    Mikko J. Alava
    Journal of Materials Science: Materials Theory, 8 (1)
  • [33] DISLOCATION DYNAMICS IN ANISOTROPIC PIEZOELECTRIC-CRYSTALS .3. ELLIPTIC DISLOCATION LOOP
    SHINTANI, K
    MINAGAWA, S
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1990, 62 (03): : 275 - 282
  • [34] Propagation dynamics of mixed-pattern solitons in strongly nonlocal nonlinear media
    Jia, Shuai
    Song, Li-Min
    Yang, Zhen-Jun
    Pang, Zhao-Guang
    Li, Xing-Liang
    Zhang, Shu-Min
    RESULTS IN PHYSICS, 2019, 12 : 1843 - 1849
  • [35] Propagation dynamics of modified hollow Gaussian beams in strongly nonlocal nonlinear media
    Dai, Zhiping
    Yang, Zhenjun
    Zhang, Shumin
    Pang, Zhaoguang
    You, Kaiming
    LASER PHYSICS, 2015, 25 (02)
  • [36] LATTICE DYNAMICS OF STRONGLY ANHARMONIC CRYSTALS WITH HARD CORE INTERACTION
    HORNER, H
    ZEITSCHRIFT FUR PHYSIK, 1971, 242 (05): : 432 - &
  • [37] Dislocation Dynamics in Crystals: A Macroscopic Theory in a Fractional Laplace Setting
    Dipierro, Serena
    Palatucci, Giampiero
    Valdinoci, Enrico
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (02) : 1061 - 1105
  • [38] Dislocation kink dynamics in crystals with deep Peierls potential relief
    Iunin, YL
    Nikitenko, VI
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1999, 171 (01): : 17 - 26
  • [39] Non-Equilibrium Dislocation Dynamics in Semiconductor Crystals and Superlattices
    Jou, David
    Restuccia, Liliana
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2018, 43 (02) : 163 - 170
  • [40] Dislocation dynamics during plastic deformations of complex plasma crystals
    Durniak, C.
    Samsonov, D.
    Ralph, J. F.
    Zhdanov, S.
    Morfill, G.
    PHYSICAL REVIEW E, 2013, 88 (05):