Strongly Nonlocal Dislocation Dynamics in Crystals

被引:37
|
作者
Dipierro, Serena [1 ,2 ]
Figalli, Alessio [3 ]
Valdinoci, Enrico [4 ]
机构
[1] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[4] Weierstrass Inst Angew Anal & Stochast, Berlin, Germany
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Dislocation dynamics; Fractional Laplacian; Nonlocal Peierls-Nabarro model; Oscillation and regularity results; PARTICLE-SYSTEMS; HOMOGENIZATION; EQUATION;
D O I
10.1080/03605302.2014.914536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the equation v(t) = L(s)v - W'(v) + sigma(epsilon)(t,x) in (o,+infinity) x IR, where L-s is an integro-differential operator of order 2s, with s is an element of(0,1), W is a periodic potential, and sigma(epsilon) is a small external stress. The solution v represents the atomic dislocation in the Peierls-Nabarro model for crystals, and we specifically consider the case s is an element of(0,1/2), which takes into account a strongly nonlocal elastic term. We study the evolution of such dislocation function for macroscopic space and time scales, namely we introduce the function v(epsilon)(t,x) := v (t/epsilon(1+2s), x/epsilon). We show that, for small epsilon, the function v(epsilon) approaches the sum of step functions. From the physical point of view, this shows that the dislocations have the tendency to concentrate at single points of the crystal, where the size of the slip coincides with the natural periodicity of the medium. We also show that the motion of these dislocation points is governed by an interior repulsive potential that is superposed to an elastic reaction to the external stress.
引用
下载
收藏
页码:2351 / 2387
页数:37
相关论文
共 50 条
  • [21] A discrete dislocation dynamics model of creeping single crystals
    Rajaguru, M.
    Keralavarma, S. M.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2018, 26 (03)
  • [22] Dislocation dynamics in pulse-loaded NaCl crystals
    Al'shits, VI
    Darinskaya, EV
    Koldaeva, MV
    PHYSICS OF THE SOLID STATE, 2001, 43 (09) : 1703 - 1711
  • [23] DISLOCATION DYNAMICS AND MECHANICAL-PROPERTIES OF CRYSTALS - INTRODUCTION
    NADGORNYI, E
    PROGRESS IN MATERIALS SCIENCE, 1988, 31 : 1 - 530
  • [24] Dislocation dynamics in pulse-loaded NaCl crystals
    V. I. Al’shits
    E. V. Darinskaya
    M. V. Koldaeva
    Physics of the Solid State, 2001, 43 : 1703 - 1711
  • [25] Modeling collective dislocation dynamics in ice single crystals
    Miguel, MC
    Vespignani, A
    Zapperi, S
    MULTISCALE PHENOMENA IN MATERIALS-EXPERIMENTS AND MODELING, 2000, 578 : 149 - 154
  • [26] Dynamics of the dislocation reactions in the single-axis crystals
    Volyar, AV
    Fadeyeva, TA
    Egorov, YA
    Shipulin, OA
    NONLINEAR OPTICS OF LIQUID AND PHOTOREFRACTIVE CRYSTALS, 2003, 5257 : 280 - 285
  • [27] DISLOCATION DYNAMICS IN DISORDERED CRYSTALS WITH HIGH PEIERLS BARRIERS
    VINOKUR, VM
    JOURNAL DE PHYSIQUE, 1986, 47 (09): : 1425 - 1429
  • [28] A discrete mechanics approach to dislocation dynamics in BCC crystals
    Ramasubramaniam, A.
    Ariza, M. P.
    Ortiz, M.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (03) : 615 - 647
  • [29] DISLOCATION DYNAMICS IN LIF AND MGO SINGLE-CRYSTALS
    SRINIVASAN, M
    FOTEDAR, HL
    STOEBE, TG
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1973, 17 (01): : 257 - 265
  • [30] Dislocation dynamics in hexagonal close-packed crystals
    Aubry, S.
    Rhee, M.
    Hommes, G.
    Bulatov, V. V.
    Arsenlis, A.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 94 : 105 - 126