Strongly Nonlocal Dislocation Dynamics in Crystals

被引:37
|
作者
Dipierro, Serena [1 ,2 ]
Figalli, Alessio [3 ]
Valdinoci, Enrico [4 ]
机构
[1] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[4] Weierstrass Inst Angew Anal & Stochast, Berlin, Germany
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Dislocation dynamics; Fractional Laplacian; Nonlocal Peierls-Nabarro model; Oscillation and regularity results; PARTICLE-SYSTEMS; HOMOGENIZATION; EQUATION;
D O I
10.1080/03605302.2014.914536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the equation v(t) = L(s)v - W'(v) + sigma(epsilon)(t,x) in (o,+infinity) x IR, where L-s is an integro-differential operator of order 2s, with s is an element of(0,1), W is a periodic potential, and sigma(epsilon) is a small external stress. The solution v represents the atomic dislocation in the Peierls-Nabarro model for crystals, and we specifically consider the case s is an element of(0,1/2), which takes into account a strongly nonlocal elastic term. We study the evolution of such dislocation function for macroscopic space and time scales, namely we introduce the function v(epsilon)(t,x) := v (t/epsilon(1+2s), x/epsilon). We show that, for small epsilon, the function v(epsilon) approaches the sum of step functions. From the physical point of view, this shows that the dislocations have the tendency to concentrate at single points of the crystal, where the size of the slip coincides with the natural periodicity of the medium. We also show that the motion of these dislocation points is governed by an interior repulsive potential that is superposed to an elastic reaction to the external stress.
引用
下载
收藏
页码:2351 / 2387
页数:37
相关论文
共 50 条
  • [1] EDGE DISLOCATION IN NONLOCAL HEXAGONAL ELASTIC CRYSTALS
    ERINGEN, AC
    BALTA, F
    CRYSTAL LATTICE DEFECTS, 1979, 8 (02): : 73 - 80
  • [2] SCREW DISLOCATION IN NONLOCAL HEXAGONAL ELASTIC CRYSTALS
    ERINGEN, AC
    BALTA, F
    CRYSTAL LATTICE DEFECTS, 1978, 7 (04): : 183 - 189
  • [3] Identifiability of dislocation structures of strongly distorted crystals
    F. F. Satdarova
    Crystallography Reports, 2006, 51 : 72 - 80
  • [4] Identifiability of dislocation structures of strongly distorted crystals
    Satdarova, FF
    CRYSTALLOGRAPHY REPORTS, 2006, 51 (01) : 72 - 80
  • [5] Discrete dislocation dynamics in crystals
    Ariza, M. P.
    Ramasubramaniam, A.
    Ortiz, M.
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2006, 2008, 12 : 387 - +
  • [6] DISLOCATION DENSITY IN STRONGLY DEFORMED SODIUM CHLORIDE CRYSTALS
    MATUCHA, KH
    FRANZBECKER, W
    WILKENS, M
    PHYSICA STATUS SOLIDI, 1969, 33 (01): : 493 - +
  • [7] The dynamics of an edge dislocation in a ferromagnetic crystals
    Dezhin, V. V.
    Nechaev, V. N.
    5TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES (IC-MSQUARE 2016), 2016, 738
  • [8] Parametric dislocation dynamics of anisotropic crystals
    Han, X
    Ghoniem, NM
    Wang, Z
    PHILOSOPHICAL MAGAZINE, 2003, 83 (31-34): : 3705 - 3721
  • [9] Visualization of dislocation dynamics in colloidal crystals
    Schall, P
    Cohen, I
    Weitz, DA
    Spaepen, F
    SCIENCE, 2004, 305 (5692) : 1944 - 1948
  • [10] DISLOCATION DYNAMICS IN NIOBIUM SINGLE CRYSTALS
    EVANS, KR
    SCHWENK, EB
    ACTA METALLURGICA, 1970, 18 (01): : 1 - &