Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning

被引:21
|
作者
Shawwa, Khaled [1 ]
Ghosh, Erina [2 ]
Lanius, Stephanie [2 ]
Schwager, Emma [2 ]
Eshelman, Larry [2 ]
Kashani, Kianoush B. [1 ,3 ]
机构
[1] Mayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USA
[2] Philips Res North Amer, Cambridge, MA USA
[3] Mayo Clin, Div Pulm & Crit Care Med, Rochester, MN 55905 USA
关键词
acute kidney injury; critical care; intensive care unit; machine learning; ACUTE-RENAL-FAILURE; INTENSIVE-CARE; HOSPITALIZED-PATIENTS; ELECTRONIC ALERT; RISK; ICU; AKI; SURVEILLANCE; VALIDATION; CREATININE;
D O I
10.1093/ckj/sfaa145
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background. Acute kidney injury (AKI) carries a poor prognosis. Its incidence is increasing in the intensive care unit (ICU). Our purpose in this study is to develop and externally validate a model for predicting AKI in the ICU using patient data present prior to ICU admission. Methods. We used data of 98472 adult ICU admissions at Mayo Clinic between 1 January 2005 and 31 December 2017 and 51801 encounters from Medical Information Mart for Intensive Care III (MIMIC-III) cohort. A gradient-boosting model was trained on 80% of the Mayo Clinic cohort using a set of features to predict AKI acquired in the ICU. Results. AKI was identified in 39307 (39.9%) encounters in the Mayo Clinic cohort. Patients who developed AKI in the ICU were older and had higher ICU and in-hospital mortality compared to patients without AKI. A 30-feature model yielded an area under the receiver operating curve of 0.690 [95% confidence interval (CI) 0.682-0.697] in the Mayo Clinic cohort set and 0.656 (95% CI 0.648-0.664) in the MIMIC-III cohort. Conclusions. Using machine learning, AKI among ICU patients can be predicted using information available prior to admission. This model is independent of ICU information, making it valuable for stratifying patients at admission.
引用
收藏
页码:1428 / 1435
页数:8
相关论文
共 50 条
  • [1] Predicting outcomes of acute kidney injury in critically ill patients using machine learning
    Fateme Nateghi Haredasht
    Liesbeth Viaene
    Hans Pottel
    Wouter De Corte
    Celine Vens
    Scientific Reports, 13
  • [2] Predicting outcomes of acute kidney injury in critically ill patients using machine learning
    Nateghi Haredasht, Fateme
    Viaene, Liesbeth
    Pottel, Hans
    De Corte, Wouter
    Vens, Celine
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Machine learning model for predicting acute kidney injury progression in critically ill patients
    Wei, Canzheng
    Zhang, Lifan
    Feng, Yunxia
    Ma, Aijia
    Kang, Yan
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [4] Machine learning model for predicting acute kidney injury progression in critically ill patients
    Canzheng Wei
    Lifan Zhang
    Yunxia Feng
    Aijia Ma
    Yan Kang
    BMC Medical Informatics and Decision Making, 22
  • [5] Interpretable machine learning model for predicting acute kidney injury in critically ill patients
    Li, Xunliang
    Wang, Peng
    Zhu, Yuke
    Zhao, Wenman
    Pan, Haifeng
    Wang, Deguang
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [6] Federated machine learning for predicting acute kidney injury in critically ill patients: a multicenter study in Taiwan
    Huang, Chun-Te
    Wang, Tsai-Jung
    Kuo, Li-Kuo
    Tsai, Ming-Ju
    Cia, Cong-Tat
    Chiang, Dung-Hung
    Chang, Po-Jen
    Chong, Inn-Wen
    Tsai, Yi-Shan
    Chu, Yuan-Chia
    Liu, Chia-Jen
    Chen, Cheng-Hsu
    Pai, Kai-Chih
    Wu, Chieh-Liang
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2023, 11 (01)
  • [7] Federated machine learning for predicting acute kidney injury in critically ill patients: a multicenter study in Taiwan
    Chun-Te Huang
    Tsai-Jung Wang
    Li-Kuo Kuo
    Ming-Ju Tsai
    Cong-Tat Cia
    Dung-Hung Chiang
    Po-Jen Chang
    Inn-Wen Chong
    Yi-Shan Tsai
    Yuan-Chia Chu
    Chia-Jen Liu
    Cheng-Hsu Chen
    Kai-Chih Pai
    Chieh-Liang Wu
    Health Information Science and Systems, 11
  • [8] Prediction of Acute Kidney Injury for Critically Ill Cardiogenic Shock Patients with Machine Learning Algorithms
    Zhang, Xiaofei
    Xiong, Yonghong
    Liu, Huilan
    Liu, Qian
    Chen, Shubin
    INTERNATIONAL JOURNAL OF GENERAL MEDICINE, 2025, 18 : 33 - 42
  • [9] Machine Learning Models for Predicting Mortality in Critically Ill Patients with Sepsis-Associated Acute Kidney Injury: A Systematic Review
    Wu, Chieh-Chen
    Poly, Tahmina Nasrin
    Weng, Yung-Ching
    Lin, Ming-Chin
    Islam, Md. Mohaimenul
    DIAGNOSTICS, 2024, 14 (15)
  • [10] Acute kidney injury in critically ill patients
    Bouzas-Mosquera, Alberto
    Vazquez-Rodriguez, Jose M.
    Peteiro, Jesus
    CRITICAL CARE MEDICINE, 2009, 37 (01) : 377 - 377