Predicting outcomes of acute kidney injury in critically ill patients using machine learning

被引:4
|
作者
Nateghi Haredasht, Fateme [1 ,2 ,3 ]
Viaene, Liesbeth [4 ]
Pottel, Hans [1 ]
De Corte, Wouter [5 ]
Vens, Celine [1 ,2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Publ Hlth & Primary Care, Campus KULAK, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium
[2] ITEC Imec, Etienne Sabbelaan 51, B-8500 Kortrijk, Belgium
[3] Katholieke Univ Leuven, Etienne Sabbelaan 51, B-8500 Kortrijk, Belgium
[4] AZ Groeninge Hosp, Dept Nephrol, President Kennedylaan 4, B-8500 Kortrijk, Belgium
[5] AZ Groeninge Hosp, Dept Anesthesiol & Intens Care Med, President Kennedylaan 4, B-8500 Kortrijk, Belgium
关键词
D O I
10.1038/s41598-023-36782-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acute Kidney Injury (AKI) is a sudden episode of kidney failure that is frequently seen in critically ill patients. AKI has been linked to chronic kidney disease (CKD) and mortality. We developed machine learning-based prediction models to predict outcomes following AKI stage 3 events in the intensive care unit. We conducted a prospective observational study that used the medical records of ICU patients diagnosed with AKI stage 3. A random forest algorithm was used to develop two models that can predict patients who will progress to CKD after three and six months of experiencing AKI stage 3. To predict mortality, two survival prediction models have been presented using random survival forests and survival XGBoost. We evaluated established CKD prediction models using AUCROC, and AUPR curves and compared them with the baseline logistic regression models. The mortality prediction models were evaluated with an external test set, and the C-indices were compared to baseline COXPH. We included 101 critically ill patients who experienced AKI stage 3. To increase the training set for the mortality prediction task, an unlabeled dataset has been added. The RF (AUPR: 0.895 and 0.848) and XGBoost (c-index: 0.8248) models have a better performance than the baseline models in predicting CKD and mortality, respectively Machine learning-based models can assist clinicians in making clinical decisions regarding critically ill patients with severe AKI who are likely to develop CKD following discharge. Additionally, we have shown better performance when unlabeled data are incorporated into the survival analysis task.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Predicting outcomes of acute kidney injury in critically ill patients using machine learning
    Fateme Nateghi Haredasht
    Liesbeth Viaene
    Hans Pottel
    Wouter De Corte
    Celine Vens
    [J]. Scientific Reports, 13
  • [2] Machine learning model for predicting acute kidney injury progression in critically ill patients
    Wei, Canzheng
    Zhang, Lifan
    Feng, Yunxia
    Ma, Aijia
    Kang, Yan
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [3] Machine learning model for predicting acute kidney injury progression in critically ill patients
    Canzheng Wei
    Lifan Zhang
    Yunxia Feng
    Aijia Ma
    Yan Kang
    [J]. BMC Medical Informatics and Decision Making, 22
  • [4] Interpretable machine learning model for predicting acute kidney injury in critically ill patients
    Li, Xunliang
    Wang, Peng
    Zhu, Yuke
    Zhao, Wenman
    Pan, Haifeng
    Wang, Deguang
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [5] Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning
    Shawwa, Khaled
    Ghosh, Erina
    Lanius, Stephanie
    Schwager, Emma
    Eshelman, Larry
    Kashani, Kianoush B.
    [J]. CLINICAL KIDNEY JOURNAL, 2021, 14 (05) : 1428 - 1435
  • [6] Federated machine learning for predicting acute kidney injury in critically ill patients: a multicenter study in Taiwan
    Huang, Chun-Te
    Wang, Tsai-Jung
    Kuo, Li-Kuo
    Tsai, Ming-Ju
    Cia, Cong-Tat
    Chiang, Dung-Hung
    Chang, Po-Jen
    Chong, Inn-Wen
    Tsai, Yi-Shan
    Chu, Yuan-Chia
    Liu, Chia-Jen
    Chen, Cheng-Hsu
    Pai, Kai-Chih
    Wu, Chieh-Liang
    [J]. HEALTH INFORMATION SCIENCE AND SYSTEMS, 2023, 11 (01)
  • [7] Federated machine learning for predicting acute kidney injury in critically ill patients: a multicenter study in Taiwan
    Chun-Te Huang
    Tsai-Jung Wang
    Li-Kuo Kuo
    Ming-Ju Tsai
    Cong-Tat Cia
    Dung-Hung Chiang
    Po-Jen Chang
    Inn-Wen Chong
    Yi-Shan Tsai
    Yuan-Chia Chu
    Chia-Jen Liu
    Cheng-Hsu Chen
    Kai-Chih Pai
    Chieh-Liang Wu
    [J]. Health Information Science and Systems, 11
  • [8] Machine Learning Models for Predicting Mortality in Critically Ill Patients with Sepsis-Associated Acute Kidney Injury: A Systematic Review
    Wu, Chieh-Chen
    Poly, Tahmina Nasrin
    Weng, Yung-Ching
    Lin, Ming-Chin
    Islam, Md. Mohaimenul
    [J]. DIAGNOSTICS, 2024, 14 (15)
  • [9] Acute kidney injury criteria predict outcomes of critically ill patients
    Barrantes, Fidel
    Tian, Jianmin
    Vazquez, Rodrigo
    Amoateng-Adjepong, Yaw
    Manthous, Constantine A.
    [J]. CRITICAL CARE MEDICINE, 2008, 36 (05) : 1397 - 1403
  • [10] Nephrology Referral and Outcomes in Critically Ill Acute Kidney Injury Patients
    Costa e Silva, Veronica Torres
    Liano, Fernando
    Muriel, Alfonso
    Diez, Rafael
    de Castro, Isac
    Yu, Luis
    [J]. PLOS ONE, 2013, 8 (08):