Predicting acute kidney injury in critically ill patients using comorbid conditions utilizing machine learning
被引:21
|
作者:
Shawwa, Khaled
论文数: 0引用数: 0
h-index: 0
机构:
Mayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USAMayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USA
Shawwa, Khaled
[1
]
Ghosh, Erina
论文数: 0引用数: 0
h-index: 0
机构:
Philips Res North Amer, Cambridge, MA USAMayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USA
Ghosh, Erina
[2
]
Lanius, Stephanie
论文数: 0引用数: 0
h-index: 0
机构:
Philips Res North Amer, Cambridge, MA USAMayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USA
Lanius, Stephanie
[2
]
Schwager, Emma
论文数: 0引用数: 0
h-index: 0
机构:
Philips Res North Amer, Cambridge, MA USAMayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USA
Schwager, Emma
[2
]
Eshelman, Larry
论文数: 0引用数: 0
h-index: 0
机构:
Philips Res North Amer, Cambridge, MA USAMayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USA
Eshelman, Larry
[2
]
Kashani, Kianoush B.
论文数: 0引用数: 0
h-index: 0
机构:
Mayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USA
Mayo Clin, Div Pulm & Crit Care Med, Rochester, MN 55905 USAMayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USA
Kashani, Kianoush B.
[1
,3
]
机构:
[1] Mayo Clin, Div Nephrol & Hypertens, Rochester, MN 55905 USA
[2] Philips Res North Amer, Cambridge, MA USA
[3] Mayo Clin, Div Pulm & Crit Care Med, Rochester, MN 55905 USA
Background. Acute kidney injury (AKI) carries a poor prognosis. Its incidence is increasing in the intensive care unit (ICU). Our purpose in this study is to develop and externally validate a model for predicting AKI in the ICU using patient data present prior to ICU admission. Methods. We used data of 98472 adult ICU admissions at Mayo Clinic between 1 January 2005 and 31 December 2017 and 51801 encounters from Medical Information Mart for Intensive Care III (MIMIC-III) cohort. A gradient-boosting model was trained on 80% of the Mayo Clinic cohort using a set of features to predict AKI acquired in the ICU. Results. AKI was identified in 39307 (39.9%) encounters in the Mayo Clinic cohort. Patients who developed AKI in the ICU were older and had higher ICU and in-hospital mortality compared to patients without AKI. A 30-feature model yielded an area under the receiver operating curve of 0.690 [95% confidence interval (CI) 0.682-0.697] in the Mayo Clinic cohort set and 0.656 (95% CI 0.648-0.664) in the MIMIC-III cohort. Conclusions. Using machine learning, AKI among ICU patients can be predicted using information available prior to admission. This model is independent of ICU information, making it valuable for stratifying patients at admission.
机构:
Univ Sao Paulo, Dept Internal Med, Sch Med Ribeirao Preto, BR-14049 Ribeirao Preto, BrazilUniv Fortaleza, Sch Med, Dept Internal Med, Fortaleza, Ceara, Brazil
机构:
Univ Pittsburgh, Ctr Crit Care Nephrol, Dept Crit Care Med, 3347 Forbes Ave,Suite 220, Pittsburgh, PA 15213 USAUniv Pittsburgh, Ctr Crit Care Nephrol, Dept Crit Care Med, 3347 Forbes Ave,Suite 220, Pittsburgh, PA 15213 USA
Tohme, Fadi A.
Murugan, Raghavan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Ctr Crit Care Nephrol, Dept Crit Care Med, 3347 Forbes Ave,Suite 220, Pittsburgh, PA 15213 USA
Univ Pittsburgh, Dept Crit Care Med, CRISMA Ctr, Pittsburgh, PA 15213 USAUniv Pittsburgh, Ctr Crit Care Nephrol, Dept Crit Care Med, 3347 Forbes Ave,Suite 220, Pittsburgh, PA 15213 USA
Murugan, Raghavan
Kellum, John A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pittsburgh, Ctr Crit Care Nephrol, Dept Crit Care Med, 3347 Forbes Ave,Suite 220, Pittsburgh, PA 15213 USA
Univ Pittsburgh, Dept Crit Care Med, CRISMA Ctr, Pittsburgh, PA 15213 USAUniv Pittsburgh, Ctr Crit Care Nephrol, Dept Crit Care Med, 3347 Forbes Ave,Suite 220, Pittsburgh, PA 15213 USA
机构:
Hebei Med Univ, Dept Crit Care Med, Hosp 4, Shijiazhuang, Hebei, Peoples R ChinaHebei Med Univ, Dept Crit Care Med, Hosp 4, Shijiazhuang, Hebei, Peoples R China
Zhi, Hai Jun
Li, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Cangzhou Cent Hosp, Emergency Dept, Cangzhou, Peoples R ChinaHebei Med Univ, Dept Crit Care Med, Hosp 4, Shijiazhuang, Hebei, Peoples R China
Li, Yong
Wang, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Cangzhou Cent Hosp, Emergency Dept, Cangzhou, Peoples R ChinaHebei Med Univ, Dept Crit Care Med, Hosp 4, Shijiazhuang, Hebei, Peoples R China
Wang, Bo
Cui, Xiao Ya
论文数: 0引用数: 0
h-index: 0
机构:
Cangzhou Cent Hosp, Emergency Dept, Cangzhou, Peoples R ChinaHebei Med Univ, Dept Crit Care Med, Hosp 4, Shijiazhuang, Hebei, Peoples R China
Cui, Xiao Ya
Zhang, Meng
论文数: 0引用数: 0
h-index: 0
机构:
Cangzhou Cent Hosp, Emergency Dept, Cangzhou, Peoples R ChinaHebei Med Univ, Dept Crit Care Med, Hosp 4, Shijiazhuang, Hebei, Peoples R China
Zhang, Meng
Hu, Zhen Jie
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Med Univ, Dept Crit Care Med, Hosp 4, Shijiazhuang, Hebei, Peoples R ChinaHebei Med Univ, Dept Crit Care Med, Hosp 4, Shijiazhuang, Hebei, Peoples R China
机构:
Med Univ Innsbruck, Div Intens Care & Emergency Med, Dept Internal Med, Innsbruck, AustriaMed Univ Innsbruck, Div Intens Care & Emergency Med, Dept Internal Med, Innsbruck, Austria
Klein, S. J.
Koeglberger, P.
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ Innsbruck, Div Intens Care & Emergency Med, Dept Internal Med, Innsbruck, AustriaMed Univ Innsbruck, Div Intens Care & Emergency Med, Dept Internal Med, Innsbruck, Austria
Koeglberger, P.
Joannidis, M.
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ Innsbruck, Div Intens Care & Emergency Med, Dept Internal Med, Innsbruck, AustriaMed Univ Innsbruck, Div Intens Care & Emergency Med, Dept Internal Med, Innsbruck, Austria
机构:
Univ Michigan, Sch Med, Dept Internal Med, Div Nephrol, Ann Arbor, MI 48109 USAUniv Michigan, Sch Med, Dept Internal Med, Div Nephrol, Ann Arbor, MI 48109 USA
Humes, H. David
Ding, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Huashan Hosp, Shanghai 200433, Peoples R ChinaUniv Michigan, Sch Med, Dept Internal Med, Div Nephrol, Ann Arbor, MI 48109 USA
Ding, Feng
Song, Joon Ho
论文数: 0引用数: 0
h-index: 0
机构:
Inha Univ, Sch Med, Inchon, South KoreaUniv Michigan, Sch Med, Dept Internal Med, Div Nephrol, Ann Arbor, MI 48109 USA