Interval observers for PDEs: approximation approach

被引:2
|
作者
Kharkovskaia, Tatiana [1 ,2 ]
Efimov, Denis [1 ,3 ]
Polyakov, Andrey [1 ,3 ]
Richard, Jean-Pierre [1 ,3 ]
机构
[1] Ecole Cent Lille, CRIStAL, UMR CNRS 9189, BP 48, F-59651 Villeneuve Dascq, France
[2] ITMO Univ, Dept Control Syst & Informat, 49 Kronverkskiy Av, St Petersburg 197101, Russia
[3] Inria, Non A Team, Parc Sci Haute Borne,40 Av, F-59650 Villeneuve Dascq, France
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 18期
关键词
Interval observers; PDE; Finite-element approximation; LINEAR POSITIVE SYSTEMS; LPV SYSTEMS; STATE ESTIMATION; L-1;
D O I
10.1016/j.ifacol.2016.10.283
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of interval state estimation is studied for systems described by parabolic Partial Differential Equations (PDEs). The proposed solution is based on a finite-element approximation of PDE, with posterior design of an interval observer for the obtained ordinary differential equation. The interval inclusion of the state function of PDE is obtained using the estimates on the error of discretization. The results are illustrated by numerical experiments with an academic example. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:915 / 920
页数:6
相关论文
共 50 条
  • [31] Multilevel tensor approximation of PDEs with random data
    Jonas Ballani
    Daniel Kressner
    Michael D. Peters
    Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 : 400 - 427
  • [32] Numerical approximation of PDEs and Clement's interpolation
    Rappaz, Jacques
    Partial Differential Equations and Functional Analysis: The Philippe Clement Festschrift, 2006, 168 : 237 - 250
  • [33] Deep Neural Networks and Smooth Approximation of PDEs
    Doleglo, Kamil
    Paszynski, Maciej
    Demkowicz, Leszek
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 328 - 332
  • [34] The Trotter-Kato theorem and approximation of PDEs
    Ito, K
    Kappel, F
    MATHEMATICS OF COMPUTATION, 1998, 67 (221) : 21 - 44
  • [35] Estimation in uncertain switched systems using a bank of interval observers: local vs glocal approach
    Rotondo, Damiano
    Efimov, Denis
    Cristofaro, Andrea
    Johansen, Tor Arne
    IFAC PAPERSONLINE, 2020, 53 (02): : 4701 - 4706
  • [36] Interval Observers For Discrete-time Systems
    Mazenc, Frederic
    Thach Ngoc Dinh
    Niculescu, Silviu Iulian
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 6755 - 6760
  • [37] Fractional interval observers and initialization of fractional systems
    Frej, Ghazi Bel Haj
    Malti, Rachid
    Aoun, Mohamed
    Raissi, Tarek
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82
  • [38] Interval observers for discrete-time systems
    Mazenc, Frederic
    Thach Ngoc Dinh
    Niculescu, Silviu Iulian
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (17) : 2867 - 2890
  • [39] Design of interval observers for uncertain dynamical systems
    Efimov, D.
    Raissi, T.
    AUTOMATION AND REMOTE CONTROL, 2016, 77 (02) : 191 - 225
  • [40] On Design of Sampled-Data Interval Observers
    Efimov, D.
    Fridman, E.
    Polyakov, A.
    Perruquetti, W.
    Richard, J-P
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 1691 - 1696