Asymptotics of scaling parameters for period-doubling in unimodal maps with asymmetric critical points

被引:7
|
作者
Mestel, BD
Osbaldestin, AH
机构
[1] Univ Exeter, Sch Math Sci, Exeter EX4 4QE, Devon, England
[2] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
关键词
D O I
10.1063/1.533398
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The universal period-doubling scaling of a unimodal map with an asymmetric critical point is governed by a period-2 point of a renormalization operator. The period-2 point is parametrized by the degree of the critical point and the asymmetry modulus. In this paper we study the asymptotics of period-2 points and their associated scaling parameters in the singular limit of degree tending to 1. (C) 2000 American Institute of Physics. [S0022-2488(00)06505-1].
引用
收藏
页码:4732 / 4746
页数:15
相关论文
共 50 条
  • [41] Scaling properties of bicritical dynamics in unidirectionally coupled period-doubling systems in the presence of noise
    Kapustina, JV
    Kuznetsov, AP
    Kuznetsov, SP
    Mosekilde, E
    PHYSICAL REVIEW E, 2001, 64 (06):
  • [42] Sub-critical flip bifurcations that may or may not result in period-doubling
    Soliman, MS
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (04): : 751 - 757
  • [43] Critical slowing down indicators in synchronous period-doubling for salamander flicker vision
    Mahtab Mehrabbeik
    Ramesh Ramamoorthy
    Karthikeyan Rajagopal
    Fahimeh Nazarimehr
    Sajad Jafari
    Iqtadar Hussain
    The European Physical Journal Special Topics, 2021, 230 : 3291 - 3298
  • [44] Scaling properties of bicritical dynamics in unidirectionally coupled period-doubling systems in the presence of noise
    Kapustina, Julia V.
    Kuznetsov, Alexandr P.
    Kuznetsov, Sergey P.
    Mosekilde, Erik
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (6 II): : 1 - 066207
  • [45] A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker
    Wen, Guilin
    Chen, Shijian
    Jin, Qiutan
    JOURNAL OF SOUND AND VIBRATION, 2008, 311 (1-2) : 212 - 223
  • [46] Birth of a New Class of Period-Doubling Scaling Behavior as a Result of Bifurcation in the Renormalization Equation
    S. P. Kuznetsov
    A. A. Mailybaev
    I. R. Sataev
    Journal of Statistical Physics, 2008, 130 : 599 - 616
  • [47] Birth of a new class of period-doubling scaling behavior as a result of bifurcation in the renormalization equation
    Kuznetsov, S. P.
    Mailybaev, A. A.
    Sataev, I. R.
    JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (03) : 599 - 616
  • [48] Critical slowing down indicators in synchronous period-doubling for salamander flicker vision
    Mehrabbeik, Mahtab
    Ramamoorthy, Ramesh
    Rajagopal, Karthikeyan
    Nazarimehr, Fahimeh
    Jafari, Sajad
    Hussain, Iqtadar
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (16-17): : 3291 - 3298
  • [49] Review and examples of non-Feigenbaum critical situations associated with period-doubling
    Kuznetsov, SP
    Kuznetsov, AP
    Sataev, IR
    2005 INTERNATIONAL CONFERENCE ON PHYSICS AND CONTROL (PHYSCON), 2005, : 610 - 615
  • [50] Feigenbaum theory for unimodal maps with asymmetric critical point: Rigorous results
    Mestel, BD
    Osbaldestin, AH
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (01) : 211 - 228