Asymptotics of scaling parameters for period-doubling in unimodal maps with asymmetric critical points

被引:7
|
作者
Mestel, BD
Osbaldestin, AH
机构
[1] Univ Exeter, Sch Math Sci, Exeter EX4 4QE, Devon, England
[2] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
关键词
D O I
10.1063/1.533398
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The universal period-doubling scaling of a unimodal map with an asymmetric critical point is governed by a period-2 point of a renormalization operator. The period-2 point is parametrized by the degree of the critical point and the asymmetry modulus. In this paper we study the asymptotics of period-2 points and their associated scaling parameters in the singular limit of degree tending to 1. (C) 2000 American Institute of Physics. [S0022-2488(00)06505-1].
引用
收藏
页码:4732 / 4746
页数:15
相关论文
共 50 条
  • [31] On the scaling properties of two unidirectionally coupled period-doubling systems in the presence of noise
    Gulyaev, YV
    Kapustina, YV
    Kuznetsov, AP
    Kuznetsov, SP
    TECHNICAL PHYSICS LETTERS, 2001, 27 (11) : 960 - 963
  • [32] S-unimodal Misiurewicz maps with flat critical points
    Zweimüller, R
    FUNDAMENTA MATHEMATICAE, 2004, 181 (01) : 1 - 25
  • [33] EVIDENCE FOR A NEW PERIOD-DOUBLING SEQUENCE IN 4-DIMENSIONAL SYMPLECTIC MAPS
    MAO, JM
    SATIJA, II
    HU, B
    PHYSICAL REVIEW A, 1985, 32 (03) : 1927 - 1929
  • [35] NOISE-SENSITIVE HYSTERESIS LOOPS AROUND PERIOD-DOUBLING BIFURCATION POINTS
    PIERANSKI, P
    MALECKI, J
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1987, 9 (07): : 757 - 780
  • [36] Small-signal amplification of period-doubling bifurcations in smooth iterated maps
    Xiaopeng Zhao
    David G. Schaeffer
    Carolyn M. Berger
    Daniel J. Gauthier
    Nonlinear Dynamics, 2007, 48 : 381 - 389
  • [37] ALGORITHMS FOR DETERMINATION OF PERIOD-DOUBLING BIFURCATION POINTS IN ORDINARY DIFFERENTIAL-EQUATIONS
    KUBICEK, M
    HOLODNIOK, M
    JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 70 (01) : 203 - 217
  • [38] Predicting tipping points of dynamical systems during a period-doubling route to chaos
    Nazarimehr, Fahimeh
    Jafari, Sajad
    Golpayegani, Seyed Mohammad Reze Hashemi
    Perc, Matjaz
    Sprott, Julien Clinton
    CHAOS, 2018, 28 (07)
  • [39] CRITICAL-BEHAVIOR OF THE LYAPUNOV NUMBER AT THE PERIOD-DOUBLING ONSET OF CHAOS
    GEISEL, T
    NIERWETBERG, J
    KELLER, J
    PHYSICS LETTERS A, 1981, 86 (02) : 75 - 78
  • [40] ASYMMETRIC DUFFING OSCILLATOR: THE BIRTH AND BUILD-UP OF A PERIOD-DOUBLING CASCADE
    Kyziol, Jan
    Okninski, Andrzej
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2024, 62 (04) : 713 - 719