Asymptotics of scaling parameters for period-doubling in unimodal maps with asymmetric critical points

被引:7
|
作者
Mestel, BD
Osbaldestin, AH
机构
[1] Univ Exeter, Sch Math Sci, Exeter EX4 4QE, Devon, England
[2] Univ Loughborough, Dept Math Sci, Loughborough LE11 3TU, Leics, England
关键词
D O I
10.1063/1.533398
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The universal period-doubling scaling of a unimodal map with an asymmetric critical point is governed by a period-2 point of a renormalization operator. The period-2 point is parametrized by the degree of the critical point and the asymmetry modulus. In this paper we study the asymptotics of period-2 points and their associated scaling parameters in the singular limit of degree tending to 1. (C) 2000 American Institute of Physics. [S0022-2488(00)06505-1].
引用
收藏
页码:4732 / 4746
页数:15
相关论文
共 50 条
  • [1] Asymmetric Unimodal Maps with Non-universal Period-Doubling Scaling Laws
    Oleg Kozlovski
    Sebastian van Strien
    Communications in Mathematical Physics, 2020, 379 : 103 - 143
  • [2] Asymmetric Unimodal Maps with Non-universal Period-Doubling Scaling Laws
    Kozlovski, Oleg
    van Strien, Sebastian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 379 (01) : 103 - 143
  • [3] Universality and scaling in networks of period-doubling maps with a pacemaker
    Ivanova, Anna S.
    Kuznetsov, Sergey P.
    Osbaldestin, Andrew H.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2006, 2006
  • [4] Critical fluctuations of noisy period-doubling maps
    Andrew E. Noble
    Saba Karimeddiny
    Alan Hastings
    Jonathan Machta
    The European Physical Journal B, 2017, 90
  • [5] Critical fluctuations of noisy period-doubling maps
    Noble, Andrew E.
    Karimeddiny, Saba
    Hastings, Alan
    Machta, Jonathan
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (01):
  • [6] Multiparameter critical situations, universality and scaling in two-dimensional period-doubling maps
    Kuznetsov, SP
    Kuznetsov, AP
    Sataev, IR
    JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (5-6) : 697 - 748
  • [7] Multiparameter Critical Situations, Universality and Scaling in Two-Dimensional Period-Doubling Maps
    S. P. Kuznetsov
    A. P. Kuznetsov
    I. R. Sataev
    Journal of Statistical Physics, 2005, 121 : 697 - 748
  • [8] Predicting Tipping Points in Chaotic Maps with Period-Doubling Bifurcations
    Li, Changzhi
    Ramachandran, Dhanagopal
    Rajagopal, Karthikeyan
    Jafari, Sajad
    Liu, Yongjian
    COMPLEXITY, 2021, 2021
  • [9] Dynamic period-doubling bifurcations of a unimodal map
    Davies, HG
    Rangavajhula, K
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1965): : 2043 - 2061
  • [10] PERIOD-DOUBLING IN COUPLED MAPS
    KIM, SY
    KOOK, HT
    PHYSICAL REVIEW E, 1993, 48 (02) : 785 - 799