A Bayesian approach to identification of hybrid systems

被引:20
|
作者
Juloski, AL [1 ]
Weiland, S [1 ]
Heemels, WPMH [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1109/CDC.2004.1428599
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a novel procedure for the identification of hybrid systems in the piece-wise ARX form. The procedure consists of three steps: 1) parameter estimation, 2) classification of data points and 3) partition estimation. Our approach to parameter estimation is based on the gradual refinement of the a-priori information about the parameter values, using the Bayesian inference rule. Particle filters are used for a numerical implementation of the proposed parameter estimation procedure. Data points are subsequently classified to the mode which is most likely to have generated them. A modified version of the multi-category robust linear programming (MRLP) classification procedure, adjusted to use the information derived in the previous steps or the identification algorithm, is used for estimating the partition or the PWARX map. The proposed procedure is applied for the identification of the component placement process in pick-and-place machines.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 50 条
  • [31] A Bayesian Approach to Query Language Identification
    Materna, Jiri
    Hresko, Juraj
    RASLAN 2011: RECENT ADVANCES IN SLAVONIC NATURAL LANGUAGE PROCESSING: FIFTH WORKSHOP, 2011, : 111 - 116
  • [32] Bayesian approach to powder phase identification
    Mikhalychev, Alexander
    Ulyanenkov, Alex
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2017, 50 : 776 - 786
  • [33] Particle identification in ALICE: a Bayesian approach
    J. Adam
    D. Adamová
    M. M. Aggarwal
    G. Aglieri Rinella
    M. Agnello
    N. Agrawal
    Z. Ahammed
    S. Ahmad
    S. U. Ahn
    S. Aiola
    A. Akindinov
    S. N. Alam
    D. S. D. Albuquerque
    D. Aleksandrov
    B. Alessandro
    D. Alexandre
    R. Alfaro Molina
    A. Alici
    A. Alkin
    J. R. M. Almaraz
    J. Alme
    T. Alt
    S. Altinpinar
    I. Altsybeev
    C. Alves Garcia Prado
    C. Andrei
    A. Andronic
    V. Anguelov
    T. Antičić
    F. Antinori
    P. Antonioli
    L. Aphecetche
    H. Appelshäuser
    S. Arcelli
    R. Arnaldi
    O. W. Arnold
    I. C. Arsene
    M. Arslandok
    B. Audurier
    A. Augustinus
    R. Averbeck
    M. D. Azmi
    A. Badalà
    Y. W. Baek
    S. Bagnasco
    R. Bailhache
    R. Bala
    S. Balasubramanian
    A. Baldisseri
    R. C. Baral
    The European Physical Journal Plus, 131
  • [34] Bayesian nonparametric identification of Wiener systems
    Risuleo, Riccardo Sven
    Lindsten, Fredrik
    Hjalmarsson, Hakan
    AUTOMATICA, 2019, 108
  • [35] A simulation study of a neural network based approach for the identification of hybrid systems
    Messai, Nadhir
    2007 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS: ICCES '07, 2007, : 50 - 55
  • [36] Switched Hybrid Dynamic Systems Identification Based on Pattern Recognition Approach
    Ayad, O.
    Sayed-Mouchweh, M.
    Billaudel, P.
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [37] A Sparsification Approach to Set Membership Identification of a Class of Affine Hybrid Systems
    Ozay, Necmiye
    Sznaier, Mario
    Lagoa, Constantino
    Camps, Octavia
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 123 - 130
  • [38] A neural network-based approach to hybrid systems identification for control
    Fabiani, Filippo
    Stellato, Bartolomeo
    Masti, Daniele
    Goulart, Paul J.
    AUTOMATICA, 2025, 174
  • [39] A game-theoretic approach to fault diagnosis and identification of hybrid systems
    Bresolin, Davide
    Capiluppi, Marta
    THEORETICAL COMPUTER SCIENCE, 2013, 493 : 15 - 29
  • [40] Using mixed approach in modeling and multiple fault identification of hybrid systems
    Maaref, B.
    Dhouibi, H.
    Messaoud, H.
    Simeu-Abazi, Z.
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 505 - 510