A Bayesian approach to identification of hybrid systems

被引:20
|
作者
Juloski, AL [1 ]
Weiland, S [1 ]
Heemels, WPMH [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1109/CDC.2004.1428599
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a novel procedure for the identification of hybrid systems in the piece-wise ARX form. The procedure consists of three steps: 1) parameter estimation, 2) classification of data points and 3) partition estimation. Our approach to parameter estimation is based on the gradual refinement of the a-priori information about the parameter values, using the Bayesian inference rule. Particle filters are used for a numerical implementation of the proposed parameter estimation procedure. Data points are subsequently classified to the mode which is most likely to have generated them. A modified version of the multi-category robust linear programming (MRLP) classification procedure, adjusted to use the information derived in the previous steps or the identification algorithm, is used for estimating the partition or the PWARX map. The proposed procedure is applied for the identification of the component placement process in pick-and-place machines.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 50 条
  • [21] A HYBRID PARAMETRIC NONPARAMETRIC APPROACH FOR THE IDENTIFICATION OF NONLINEAR-SYSTEMS
    MASRI, SF
    PROBABILISTIC ENGINEERING MECHANICS, 1994, 9 (1-2) : 47 - 57
  • [22] Identification of switched FIR systems with random missing outputs: A variational Bayesian approach
    Liu, Xinpeng
    Yang, Xianqiang
    Yu, Miao
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (01): : 1136 - 1151
  • [23] A Bayesian Approach to Hybrid Image Retrieval
    Tandon, Pradhee
    Jawahar, C. V.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 489 - 494
  • [24] Hybrid approach to Bayesian image reconstruction
    Zhang, CY
    Eppstein, MJ
    Godavarty, A
    Sevick-Muraca, EM
    OPTICAL TOMOGRAPHY AND SPECTROSCOPY OF TISSUE V, 2003, 4955 : 591 - 599
  • [25] Target identification with dynamic hybrid Bayesian networks
    Hautaniemi, SK
    Korpisaari, PT
    Saarinen, JPP
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VI, 2001, 4170 : 92 - 102
  • [26] Identification of hybrid systems
    Hoffmann, I
    Engell, S
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 711 - 712
  • [27] Bayesian approach to powder phase identification
    Mikhalychev, Alexander (alexander.mikhalychev@atomicus.by), 1600, International Union of Crystallography, 5 Abbey Road, Chester, CH1 2HU, United Kingdom (50):
  • [28] The identification of shipwreck sites: a Bayesian approach
    O'Shea, JM
    JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2004, 31 (11) : 1533 - 1552
  • [29] Particle identification in ALICE: a Bayesian approach
    Adam, J.
    Adamova, D.
    Aggarwal, M. M.
    Rinella, G. Aglieri
    Agnello, M.
    Agrawal, N.
    Ahammed, Z.
    Ahmad, S.
    Ahn, S. U.
    Aiola, S.
    Akindinov, A.
    Alam, S. N.
    Albuquerque, D. S. D.
    Aleksandrov, D.
    Alessandro, B.
    Alexandre, D.
    Alfaro Molina, R.
    Alici, A.
    Alkin, A.
    Almaraz, J. R. M.
    Alme, J.
    Alt, T.
    Altinpinar, S.
    Altsybeev, I.
    Alves Garcia Prado, C.
    Andrei, C.
    Andronic, A.
    Anguelov, V.
    Anticic, T.
    Antinori, F.
    Antonioli, P.
    Aphecetche, L.
    Appelshaeuser, H.
    Arcelli, S.
    Arnaldi, R.
    Arnold, O. W.
    Arsene, I. C.
    Arslandok, M.
    Audurier, B.
    Augustinus, A.
    Averbeck, R.
    Azmi, M. D.
    Badala, A.
    Baek, Y. W.
    Bagnasco, S.
    Bailhache, R.
    Bala, R.
    Balasubramanian, S.
    Baldisseri, A.
    Baral, R. C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (05):
  • [30] Identification of elastic constants by Bayesian approach
    Bartoli, I
    di Leo, A
    Viola, E
    PROBLEMS IN STRUCTURAL IDENTIFICATION AND DIAGNOSTICS: GENERAL ASPECTS AND APPLICATIONS, 2003, (471): : 1 - 15